Macroscopic experimental results of the plate impact tests of polymers are generally interpreted using the free surface approximation and the acoustic approximation. However, their validity over a range of shock pressures has not been thoroughly investigated yet. We conducted molecular dynamics simulations of plate impact tests of polyethylene to obtain molecular-level insights on those two common approximations associated with the interpretation of shock pressure and spall strength. Our results revealed that the free surface approximation could slightly underpredict the shock pressure in the polymer. The spall strength computed from the free surface velocity history can be significantly smaller than the actual tensile stress in the region of spallation.

1.
N. C.
Paxton
,
M. C.
Allenby
,
P. M.
Lewis
, and
M. A.
Woodruff
, “
Biomedical applications of polyethylene
,”
Eur. Polym. J.
118
,
412
428
(
2019
).
2.
J.
Thomas
,
B.
Joseph
,
J. P.
Jose
,
H. J.
Maria
,
P.
Main
,
A.
Ali Rahman
,
B.
Francis
,
Z.
Ahmad
, and
S.
Thomas
, “
Recent advances in cross-linked polyethylene-based nanocomposites for high voltage engineering applications: A critical review
,”
Ind. Eng. Chem. Res.
58
,
20863
20879
(
2019
).
3.
L.
An
,
Z.
Shao
,
J. N.
Armstrong
,
Y.
Huang
,
Y.
Hu
,
Z.
Li
,
D.
Faghihi
, and
S.
Ren
, “
Hierarchical structural engineering of ultrahigh-molecular-weight polyethylene
,”
ACS Appl. Mater. Interfaces
12
,
50024
50032
(
2020
).
4.
S.
Sockalingam
,
S. C.
Chowdhury
,
J. W.
Gillespie
, and
M.
Keefe
, “
Recent advances in modeling and experiments of Kevlar ballistic fibrils, fibers, yarns and flexible woven textile fabrics—A review
,”
Text. Res. J.
87
,
984
1010
(
2017
).
5.
T.
Lässig
,
F.
Bagusat
,
S.
Pfändler
,
M.
Gulde
,
D.
Heunoske
,
J.
Osterholz
,
W.
Stein
,
H.
Nahme
, and
M.
May
, “
Investigations on the spall and delamination behavior of UHMWPE composites
,”
Compos. Struct.
182
,
590
597
(
2017
).
6.
T. R.
Lässig
,
M.
May
,
U.
Heisserer
,
W.
Riedel
,
F.
Bagusat
,
H.
van der Werff
, and
S. J.
Hiermaier
, “
Effect of consolidation pressure on the impact behavior of UHMWPE composites
,”
Compos. Part B: Eng.
147
,
47
55
(
2018
).
7.
N. A.
Fleck
, “
Compressive failure of fiber composites
,”
Adv. Appl. Mech.
33
,
43
117
(
1997
).
8.
S. H.
Lee
and
A. M.
Waas
, “
Compressive response and failure of fiber reinforced unidirectional composites
,”
Int. J. Fract.
100
,
275
306
(
1999
).
9.
P. J.
Hazell
,
G. J.
Appleby-Thomas
,
X.
Trinquant
, and
D. J.
Chapman
, “
In-fiber shock propagation in Dyneema ®
,”
J. Appl. Phys.
110
,
043504
(
2011
).
10.
S.
Sockalingam
,
F. D.
Thomas
,
D.
Casem
,
J. W.
Gillespie
, and
T.
Weerasooriya
, “
Failure of Dyneema® SK76 single fiber under multiaxial transverse loading
,”
Text. Res. J.
89
,
2659
2673
(
2019
).
11.
Y.
Sun
,
Y.-C. M.
Wu
,
D.
Veysset
,
S. E.
Kooi
,
W.
Hu
,
T. M.
Swager
,
K. A.
Nelson
, and
A. J.
Hsieh
, “
Molecular dependencies of dynamic stiffening and strengthening through high strain rate microparticle impact of polyurethane and polyurea elastomers
,”
Appl. Phys. Lett.
115
,
093701
(
2019
).
12.
Y.
Sun
,
S. E.
Kooi
,
K. A.
Nelson
,
A. J.
Hsieh
, and
D.
Veysset
, “
Impact-induced glass-to-rubber transition of polyurea under high-velocity temperature-controlled microparticle impact
,”
Appl. Phys. Lett.
117
,
021905
(
2020
).
13.
D.
Veysset
,
J.-H.
Lee
,
M.
Hassani
,
S. E.
Kooi
,
E. L.
Thomas
, and
K. A.
Nelson
, “
High-velocity micro-projectile impact testing
,”
Appl. Phys. Rev.
8
,
011319
(
2021
).
14.
T. R.
Mattsson
,
J. M. D.
Lane
,
K. R.
Cochrane
,
M. P.
Desjarlais
,
A. P.
Thompson
,
F.
Pierce
, and
G. S.
Grest
, “
First-principles and classical molecular dynamics simulation of shocked polymers
,”
Phys. Rev. B.
81
,
054103
(
2010
).
15.
Y.
Fu
,
J.
Michopoulos
, and
J.-H.
Song
, “
Dynamics response of polyethylene polymer nanocomposites to shock wave loading
,”
J. Polym. Sci. Part B: Polym. Phys.
53
,
1292
1302
(
2015
).
16.
V.
Agrawal
,
P.
Peralta
,
Y.
Li
, and
J.
Oswald
, “
A pressure-transferable coarse-grained potential for modeling the shock Hugoniot of polyethylene
,”
J. Chem. Phys.
145
,
104903
(
2016
).
17.
F.
Xie
,
Z.
Lu
,
Z.
Yang
,
W.
Hu
, and
Z.
Yuan
, “
Mechanical behaviors and molecular deformation mechanisms of polymers under high speed shock compression: A molecular dynamics simulation study
,”
Polymer
98
,
294
304
(
2016
).
18.
R. M.
Elder
,
T. C.
O’Connor
,
T. L.
Chantawansri
,
Y. R.
Sliozberg
,
T. W.
Sirk
,
I.-C.
Yeh
,
M. O.
Robbins
, and
J. W.
Andzelm
, “
Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation
,”
Phys. Rev. Mater.
1
,
043606
(
2017
).
19.
T. C.
O’Connor
,
R. M.
Elder
,
Y. R.
Sliozberg
,
T. W.
Sirk
,
J. W.
Andzelm
, and
M. O.
Robbins
, “
Molecular origins of anisotropic shock propagation in crystalline and amorphous polyethylene
,”
Phys. Rev. Mater.
2
,
035601
(
2018
).
20.
S. C.
Chowdhury
,
S.
Sockalingam
, and
J. W.
Gillespie
, Jr.
, “
Inter-molecular interactions in ultrahigh molecular weight polyethylene single crystals
,”
Comput. Mater. Sci.
172
,
109360
(
2020
).
21.
L.
Liao
,
X.
Wang
, and
C.
Huang
, “
Molecular insights into shock responses of amorphous polyethylene
,”
Model. Simul. Mater. Sci. Eng.
29
,
015008
(
2021
).
22.
M. A. N.
Dewapriya
and
R. E.
Miller
, “
Molecular dynamics simulations of shock propagation and spallation in amorphous polymers
,”
J. Appl. Mech.
88
,
101005
(
2021
).
23.
M. A. N.
Dewapriya
and
R. E.
Miller
, “
Molecular-level investigation on the spallation of polyurea
,”
MRS Commun.
11
,
532
538
(
2021
).
24.
W. J.
Carter
and
S. P.
Marsh
,
Hugoniot Equation of State of Polymers
(
Los Alamos National Laboratory
,
1995
).
25.
Spall Fracture
(
Springer-Verlag
,
New York
,
2003
).
26.
J. M.
Walsh
and
R. H.
Christian
, “
Equation of state of metals from shock wave measurements
,”
Phys. Rev.
97
,
1544
1556
(
1955
).
27.
A.
Gordon
,
Equation of State of Ice and Composite Frozen Soil Materia, U.S. Army Materiel Command
(
Cold Regions Research & Engineering Laboratory
,
1968
), https://apps.dtic.mil/sti/pdfs/AD0674248.pdf.
28.
M. H.
Rice
,
R. G.
McQueen
, and
J. M.
Walsh
, “
Compression of solids by strong shock waves
,”
Solid State Phys.
6
,
1
63
(
1958
).
29.
J.
Wackerle
, “
Shock-wave compression of quartz
,”
J. Appl. Phys.
33
,
922
937
(
1962
).
30.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
31.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–The open visualization tool
,”
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
32.
H.
Sun
,
S. J.
Mumby
,
J. R.
Maple
, and
A. T.
Hagler
, “
An ab initio CFF93 all-atom force field for polycarbonates
,”
J. Am. Chem. Soc.
116
,
2978
2987
(
1994
).
33.
H.
Heinz
,
T.-J.
Lin
,
R.
Kishore Mishra
, and
F. S.
Emami
, “
Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field
,”
Langmuir
29
,
1754
1765
(
2013
).
34.
F.
Ercolessi
and
J. B.
Adams
, “
Interatomic potentials from first-principles calculations: The force-matching method
,”
Europhys. Lett.
26
,
583
588
(
1994
).
35.
M. A. N.
Dewapriya
and
R. E.
Miller
, “
Superior dynamic penetration resistance of nanoscale multilayer polymer/metal films
,”
J. Appl. Mech.
87
,
121009
(
2020
).
36.
P. J.
in ‘t Veld
and
G. C.
Rutledge
, “
Temperature-dependent elasticity of a semicrystalline interphase composed of freely rotating chains
,”
Macromolecules
36
,
7358
7365
(
2003
).
37.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
, “
A reactive potential for hydrocarbons with intermolecular interactions
,”
J. Appl. Phys.
112
,
6472
6486
(
2000
).
38.
T. C.
O’Connor
,
J.
Andzelm
, and
M. O.
Robbins
, “
AIREBO-M: A reactive model for hydrocarbons at extreme pressures
,”
J. Chem. Phys.
142
,
024903
(
2015
).
39.
A. P.
Thompson
,
S. J.
Plimpton
, and
W.
Mattson
, “
General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
,”
J. Chem. Phys.
131
,
154107
(
2009
).
40.
M. A. N.
Dewapriya
and
R. E.
Miller
, “
Energy absorption mechanisms of nanoscopic multilayer structures under ballistic impact loading
,”
Comput. Mater. Sci.
195
,
110504
(
2021
).
41.
E. J.
Reed
,
L. E.
Fried
, and
J. D.
Joannopoulos
, “
A method for tractable dynamical studies of single and double shock compression
,”
Phys. Rev. Lett.
90
,
235503
(
2003
).
42.
Y.
Ju
,
Q.
Zhang
,
Z.
Gong
,
G.
Ji
, and
L.
Zhou
, “
Molecular dynamics simulation of shock melting of aluminum single crystal
,”
J. Appl. Phys.
114
,
093507
(
2013
).
43.
X.
Yang
,
X.
Zeng
,
C.
Pu
,
W.
Chen
,
H.
Chen
, and
F.
Wang
, “
Molecular dynamics modeling of the Hugoniot states of aluminum
,”
AIP Adv.
8
,
105212
(
2018
).
44.
K.
Momma
and
F.
Izumi
, “
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
45.
J.
Hafner
, “
Ab-initio simulations of materials using VASP: Density-functional theory and beyond
,”
J. Comput. Chem.
29
,
2044
2078
(
2008
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
47.
K. G. S.
Dilrukshi
,
M. A. N.
Dewapriya
, and
U. G. A.
Puswewala
, “
Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics
,”
Theor. Appl. Mech. Lett.
5
,
167
172
(
2015
).
48.
M. A. N.
Dewapriya
,
R. K. N. D.
Rajapakse
, and
S. A.
Meguid
, “
Mechanical properties of two-dimensional materials: Atomistic modeling and future directions
,” in
Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures
(
Elsevier
,
2020
), pp.
9
35
.
49.
J. E.
Pepper
,
J.
Huneault
,
M.
Rahmat
,
B.
Ashrafi
, and
O. E.
Petel
, “
The effect of curing agent on the dynamic tensile failure of an epoxy subjected to plate impact
,”
Int. J. Impact Eng.
113
,
203
211
(
2018
).
50.
B. X.
Bie
,
J. H.
Han
,
L.
Lu
,
X. M.
Zhou
,
M. L.
Qi
,
Z.
Zhang
, and
S. N.
Luo
, “
Dynamic fracture of carbon nanotube/epoxy composites under high strain-rate loading
,”
Compos. Part A: Appl. Sci. Manuf.
68
,
282
288
(
2015
).
51.
F.
Yuan
,
L.
Tsai
,
V.
Prakash
,
A. M.
Rajendran
, and
D. P.
Dandekar
, “
Spall strength of glass fiber reinforced polymer composites
,”
Int. J. Solids Struct.
44
,
7731
7747
(
2007
).
52.
S.-N.
Luo
,
L.-B.
Han
,
Y.
Xie
,
Q.
An
,
L.
Zheng
, and
K.
Xia
, “
The relation between shock-state particle velocity and free surface velocity: A molecular dynamics study on single crystal Cu and silica glass
,”
J. Appl. Phys.
103
,
093530
(
2008
).
53.
D.
Hossain
,
M. A.
Tschopp
,
D. K.
Ward
,
J. L.
Bouvard
,
P.
Wang
, and
M. F.
Horstemeyer
, “
Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene
,”
Polymer
51
,
6071
6083
(
2010
).
54.
S.
Saeki
,
M.
Tsubokawa
,
J.
Yamanaka
, and
T.
Yamaguchi
, “
Correlation between the equation of state and the pressure dependence of glass transition and melting temperatures in polymers and rare-gas solids
,”
Polymer
33
,
577
584
(
1992
).
55.
L. A.
Belfiore
,
Physical Properties of Macromolecules
(
Wiley
,
Hoboken
,
NJ
,
2010
).
56.
G. I.
Kanel
, “
Spall fracture: Methodological aspects, mechanisms and governing factors
,”
Int. J. Fract.
163
,
173
191
(
2010
).
57.
W.
Li
,
E. N.
Hahn
,
X.
Yao
,
T. C.
Germann
,
B.
Feng
, and
X.
Zhang
, “
On the grain size dependence of shock responses in nanocrystalline sic ceramics at high strain rates
,”
Acta Mater.
200
,
632
651
(
2020
).
58.
J.-L.
Shao
,
P.
Wang
,
A.-M.
He
,
R.
Zhang
, and
C.-S.
Qin
, “
Spall strength of aluminium single crystals under high strain rates: Molecular dynamics study
,”
J. Appl. Phys.
114
,
173501
(
2013
).
59.
B. J.
Demaske
,
V. V.
Zhakhovsky
,
N. A.
Inogamov
, and
I. I.
Oleynik
, “
Ablation and spallation of gold films irradiated by ultrashort laser pulses
,”
Phys. Rev. B.
82
,
064113
(
2010
).
60.
A. L.
Bowman
,
S.
Mun
,
B. D.
Huddleston
,
S. R.
Gwaltney
,
M. I.
Baskes
, and
M. F.
Horstemeyer
, “
A nanoscale study of size scale, strain rate, temperature, and stress state effects on damage and fracture of polyethylene
,”
Mech. Mater.
161
,
104008
(
2021
).
61.
X.
Zhang
,
J.
Wang
,
W.
Guo
, and
R.
Zou
, “
A bilinear constitutive response for polyureas as a function of temperature, strain rate and pressure
,”
J. Appl. Polym. Sci.
134
,
45256
(
2017
).
62.
H.
Guo
,
W.
Guo
,
A. V.
Amirkhizi
,
R.
Zou
, and
K.
Yuan
, “
Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures
,”
Polym. Test.
53
,
234
244
(
2016
).
63.
H.
Wang
,
X.
Deng
,
H.
Wu
,
A.
Pi
,
J.
Li
, and
F.
Huang
, “
Investigating the dynamic mechanical behaviors of polyurea through experimentation and modeling
,”
Def. Technol.
15
,
875
884
(
2019
).
64.
S. S.
Sarva
,
S.
Deschanel
,
M. C.
Boyce
, and
W.
Chen
, “
Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates
,”
Polymer
48
,
2208
2213
(
2007
).
65.
C. R.
Siviour
,
S. M.
Walley
,
W. G.
Proud
, and
J. E.
Field
, “
The high strain rate compressive behaviour of polycarbonate and polyvinylidene difluoride
,”
Polymer
46
,
12546
12555
(
2005
).
66.
G. R.
Strobl
and
W.
Hagedorn
, “
Raman spectroscopic method for determining the crystallinity of polyethylene
,”
J. Polym. Sci.: Polym. Phys. Ed.
16
,
1181
1193
(
1978
).
67.
H.
Ye
,
W.
Xian
, and
Y.
Li
, “
Machine learning of coarse-grained models for organic molecules and polymers: Progress, opportunities, and challenges
,”
ACS Omega
6
,
1758
1772
(
2021
).
68.
J.
Baschnagel
,
K.
Binder
,
P.
Doruker
,
A. A.
Gusev
,
O.
Hahn
,
K.
Kremer
,
W. L.
Mattice
,
F.
Müller-Plathe
,
M.
Murat
,
W.
Paul
,
S.
Santos
,
U. W.
Suter
, and
V.
Tries
, “
Bridging the gap between atomistic and coarse-grained models of polymers: Status and perspectives
,” in
Viscoelasticity At. Models Stat. Chem.
(
Springer
,
Berlin
,
2000
), pp.
41
156
.
69.
C.-C.
Chiang
,
J.
Breslin
,
S.
Weeks
, and
Z.
Meng
, “
Dynamic mechanical behaviors of nacre-inspired graphene-polymer nanocomposites depending on internal nanostructures
,”
Extreme Mech. Lett.
49
,
101451
(
2021
).
70.
M. A. N.
Dewapriya
and
R. E.
Miller
, “Shock response of polyethylene,”
GitHub
(2021). https://github.com/nuwan-d/shock_response_pehttps://github.com/nuwan-d/shock_response_pe

Supplementary Material

You do not currently have access to this content.