The performance of a recently proposed integrated graphene-bolometric photodetector is assessed. The responsivity of hundreds of A/W and speed on the scale of hundreds of GHz are predicted. The impressive performance is attributed to the small length over which the energy is absorbed by graphene. The short length leads to a highly enhanced energy density, which causes the increase of the electron temperature in graphene. The model has been validated against recently published experimental results from high-speed graphene photodetectors and found to be in good agreement.

1.
Cisco
, Cisco Annual Internet Report (2018–2023), Cisco 1–41 (2020), available at https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.
2.
P
.
Dong
,
K. W.
Kim
,
A.
Melikyan
, and
Y.
Baeyens
, “Silicon photonics: A scaling technology for communications and interconnects,” in Technical Digest—International Electron Devices Meeting, IEDM, 2018 December (IEEE, 2019), pp. 23.4.1–23.4.4.
3.
D.
Thomson
,
A.
Zilkie
,
J. E.
Bowers
,
T.
Komljenovic
,
G. T.
Reed
,
L.
Vivien
,
D.
Marris-Morini
,
E.
Cassan
,
L.
Virot
,
J. M.
Fedeli
, and
J. M.
Hartmann
, “
Roadmap on silicon photonics
,”
J. Opt.
18
,
073003
(
2016
).
4.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
191
(
2007
).
5.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
6.
F.
Bonaccorso
,
Z.
Sun
,
T.
Hasan
, and
A. C.
Ferrari
, “
Graphene photonics and optoelectronics
,”
Nat. Photonics
4
,
611
622
(
2010
).
7.
M.
Romagnoli
,
V.
Sorianello
,
M.
Midrio
,
F. H. L.
Koppens
,
C.
Huyghebaert
,
D.
Neumaier
,
P.
Galli
,
W.
Templ
,
A.
D’Errico
, and
A. C.
Ferrari
, “
Graphene-based integrated photonics for next-generation datacom and telecom
,”
Nat. Rev. Mater.
3
,
392
414
(
2018
).
8.
J. M.
Dawlaty
,
S.
Shivaraman
,
M.
Chandrashekhar
,
F.
Rana
, and
M. G.
Spencer
, “
Measurement of ultrafast carrier dynamics in epitaxial graphene
,”
Appl. Phys. Lett.
92
,
042116
(
2008
).
9.
A.
Lucas
and
K. C.
Fong
, “
Hydrodynamics of electrons in graphene
,”
J. Phys.: Condens. Matter
30
,
053001
(
2018
).
10.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
, “
Ultrahigh electron mobility in suspended graphene
,”
Solid State Commun.
146
,
351
355
(
2008
).
11.
M.
Freitag
,
T.
Low
,
F.
Xia
, and
P.
Avouris
, “
Photoconductivity of biased graphene
,”
Nat. Photonics
7
,
53
59
(
2013
).
12.
A. N.
Grigorenko
,
M.
Polini
, and
K. S.
Novoselov
, “
Graphene plasmonics
,”
Nat. Photonics
6
,
749
758
(
2012
).
13.
A.
Pospischil
,
M.
Humer
,
M. M.
Furchi
,
D.
Bachmann
,
R.
Guider
,
T.
Fromherz
, and
T.
Mueller
, “
CMOS-compatible graphene photodetector covering all optical communication bands
,”
Nat. Photonics
7
,
892
(
2013
).
14.
D.
Schall
,
D.
Neumaier
,
M.
Mohsin
,
B.
Chmielak
,
J.
Bolten
,
C.
Porschatis
,
A.
Prinzen
,
C.
Matheisen
,
W.
Kuebart
,
B.
Junginger
,
W.
Templ
,
A. L.
Giesecke
, and
H.
Kurz
, “
50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems
,”
ACS Photonics
1
(
9
),
781
896
(
2014
).
15.
X.
Gan
,
R.-J.
Shiue
,
Y.
Gao
,
I.
Meric
,
T. F.
Heinz
,
K.
Shepard
,
J.
Hone
,
S.
Assefa
, and
D.
Englund
, “
Chip-integrated ultrafast graphene photodetector with high responsivity
,”
Nat. Photonics
7
(
11
),
883
887
(
2013
).
16.
F.
Xia
,
T.
Mueller
,
Y. M.
Lin
,
A.
Valdes-Garcia
, and
P.
Avouris
, “
Ultrafast graphene photodetector
,”
Nat. Nanotechnol
4
,
839
843
(
2009
).
17.
F. H. L.
Koppens
,
T.
Mueller
,
Ph.
Avouris
,
A. C.
Ferrari
,
M. S.
Vitiello
, and
M.
Polini
, “
Photodetectors based on graphene, other two-dimensional materials and hybrid systems
,”
Nat. Nanotechnol.
9
,
780
793
(
2014
).
18.
F.
Luo
,
M.
Zhu
,
Y.
Tan
,
H.
Sun
,
W.
Luo
,
G.
Peng
,
Z.
Zhu
,
X.-A.
Zhang
, and
S.
Qin
, “
High responsivity graphene photodetectors from visible to near-infrared by photogating effect
,”
AIP Adv.
8
,
115106
(
2018
).
19.
R.-Y.
Shiue
,
Y.
Gao
,
Y.
Wang
,
C.
Peng
,
A. D.
Robertson
,
D. K.
Efetov
,
S.
Assefa
,
F. H. L.
Koppens
,
J.
Hone
, and
D.
Englund
, “
High-responsivity graphene-boron nitride photodetector and autocorrelator in a silicon photonic integrated circuits
,”
Nano. Lett.
15
(
11
),
7288
7293
(
2015
).
20.
Y.
Ding
,
Z.
Cheng
,
X.
Zhu
,
K.
Yvind
,
J.
Dong
,
M.
Galili
,
H.
Hu
,
N. A.
Mortensen
,
S.
Xiao
, and
L. K.
Oxenlowe
, “
Ultras-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz
,”
Nanophotonics
9
(
2
),
317
325
(
2020
).
21.
A.
Urich
,
K.
Unterrainer
, and
T.
Mueller
, “
Intrinsic response time of graphene photodetectors
,”
Nano Lett.
11
,
2804
2808
(
2011
).
22.
T. J.
Yoo
,
Y. J.
Kim
,
S. K.
Lee
,
Ch. G.
Kang
,
K. E.
Chang
,
H. J.
Hwang
,
N.
Revannath
, and
B. H.
Lee
, “
Zero-bias operation of CVD graphene photodetector with asymmetric metal contacts
,”
ACS Photonics
5
,
365
370
(
2018
).
23.
D.
De Fazio
,
B.
Uzlu
,
I.
Torre
,
C.
Monasterio
,
S.
Gupta
,
T.
Khodkov
,
Y.
Bi
,
Z.
Wang
,
M.
Otto
,
M. C.
Lemme
,
S.
Goossens
,
D.
Neumaier
, and
F. H. L.
Koppens
, “
Graphene-quantum dots hybrid photodetectors with low dark-current readout
,”
ACS Nano
14
,
11897
11905
(
2020
).
24.
A.
Dorodnyy
,
Y.
Salamin
,
P.
Ma
,
J. V.
Plestina
,
N.
Lassaline
,
D.
Mikulik
,
P.
Romero-Gomez
,
A.
Fonrcuberta i Morral
, and
J.
Leuthold
, “
Plasmonic photodetectors
,”
IEEE J. Sel. Top. Quantum Electron.
24
(
6
),
1
13
(
2018
).
25.
S. M.
Koepfli
,
M.
Baumann
,
S.
Giger
,
K.
Keller
,
Y.
Horst
,
Y.
Salamin
,
Y.
Fedoryshyn
, and
J.
Leuthold
, “
High-speed graphene photodetection: 300 GHz is not the limit
,” in
2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
(IEEE, 2021).
26.
J.
Gosciniak
and
D. T. H.
Tan
, “
Theoretical investigation of graphene-based photonic modulators
,”
Sci. Rep.
3
,
1897
(
2013
).
27.
D.
Ansell
,
I. P.
Radko
,
Z.
Han
,
F. J.
Rodriguez
,
S. I.
Bozhevolnyi
, and
A. N.
Grigorenko
, “
Hybrid graphene plasmonic waveguide modulators
,”
Nat. Commun.
6
,
8846
(
2015
).
28.
M.
Ayata
,
Y.
Fedoryshyn
,
W.
Heni
,
B.
Baeuerle
,
A.
Josten
,
M.
Zahner
,
U.
Koch
,
Y.
Salamin
,
C.
Hoessbacher
,
C.
Haffner
,
D. L.
Elder
,
L. R.
Dalton
, and
J.
Leuthold
, “
High-speed plasmonic modulator in a single metal layer
,”
Science
358
,
630
632
(
2017
).
29.
R.
Amin
,
M.
Zhizhen
,
R.
Maiti
,
M.
Miscuglio
,
H.
Dalir
,
J. B.
Khurgin
, and
V. J.
Sorger
, arXiv:1812.11096.
30.
M.
Piels
and
J. E.
Bowers
, “
Photodetectors for silicon photonic integrated circuits
,” in
Photodetectors
, edited by
B.
Nabet
(
Woodhead Publishing
,
2018
), pp.
3
20
.
31.
J.
Leuthold
,
C.
Hoessbacher
,
S.
Muehlbrandt
,
A.
Melikyan
,
M.
Kohl
,
C.
Koos
,
W.
Freude
,
V.
Dolores-Calzadilla
,
M.
Smit
,
I.
Suarez
,
J.
Martínez-Pastor
,
E. P.
Fitrakis
, and
I.
Tomkos
, “
Plasmonic communications: Light on a wire
,”
Opt. Photonics
24
(
5
),
28
35
(
2013
).
32.
J. B.
Khurgin
, “
Relative merits of phononics vs. Plasmonics: The energy balance approach
,”
Nanophotonics
7
(
1
),
305
316
(
2018
).
33.
J. A.
Schuller
,
E. S.
Barnard
,
W.
Cai
,
Y. C.
Jun
,
J. S.
White
, and
M. I.
Brongersma
, “
Plasmonics for extreme light concentration and manipulation
,”
Nat. Mater.
9
,
193
204
(
2010
).
34.
P.
Ma
,
Y.
Salamin
,
B.
Baeuerle
,
A.
Josten
,
W.
Heni
,
A.
Emboras
, and
J.
Leuthold
, “
Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size
,”
ACS Photonics
6
,
154
161
(
2019
).
35.
J.
Gosciniak
and
J. B.
Khurgin
, “
On-chip ultrafast plasmonic graphene hot electron bolometric photodetector
,”
ACS Omega
5
(
24
),
14711
14719
(
2020
).
36.
J.
Gosciniak
,
F. B.
Atar
,
B.
Corbett
, and
M.
Rasras
, “
Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride
,”
Sci. Rep.
9
(
1
),
6048
(
2019
).
37.
J.
Gosciniak
,
F. B.
Atar
,
B.
Corbett
, and
M.
Rasras
, “
CMOS-compatible titanium nitride for on-chip plasmonic Schottky photodetectors
,”
ACS Omega
4
(
17
),
17223
17229
(
2019
).
38.
S.
Muehlbrandt
,
A.
Melikyan
,
T.
Harter
,
K.
Kohnle
,
A.
Muslija
,
P.
Vincze
,
S.
Wolf
,
P.
Jakobs
,
Y.
Fedoryshyn
,
W.
Freude
,
J.
Leuthold
,
C.
Koos
, and
M.
Kohl
, “
Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception
,”
Optica
3
(
7
),
741
747
(
2016
).
39.
I.
Goykhman
,
U.
Sassi
,
B.
Desiatov
,
N.
Mazurski
,
S.
Milana
,
D.
de Fazio
,
A.
Eiden
,
J.
Khurgin
,
J.
Shappir
,
U.
Levy
, and
A. C.
Ferrari
, “
On-chip integrated, silicon–graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain
,”
Nano Lett.
16
(
5
),
3005
3013
(
2016
).
40.
J.
Gosciniak
and
M.
Rasras
, “
High-bandwidth and high-responsivity waveguide-integrated plasmonic germanium photodetector
,”
J. Opt. Soc. Am. B
36
(
9
),
2481
2491
(
2019
).
41.
Y.
Salamin
,
P.
Ma
,
B.
Baeuerle
,
A.
Emboras
,
Y.
Fedoryshyn
,
W.
Heni
,
B.
Cheng
,
A.
Josten
, and
J.
Leuthold
, “
100 GHz plasmonic photodetector
,”
ACS Photonics
5
,
3291
3297
(
2018
).
42.
D. A. B.
Miller
, “
Attojoule optoelectronics for low-energy information processing and communications
,”
J. Lightwave Technol.
35
,
346
396
(
2017
).
43.
Z.
Ma
,
K.
Kikunage
,
H.
Wang
,
S.
Sun
,
R.
Amin
,
R.
Maiti
,
M. H.
Tahersima
,
H.
Dalir
,
M.
Miscuglio
, and
V. J.
Sorger
, “
Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity
,”
ACS Photonics
7
,
932
940
(
2020
).
44.
J.
Gosciniak
,
M.
Rasras
, and
J.B.
Khurgin
, “
Ultrafast plasmonic graphene photodetector based on the channel photothermoelectric effect
,”
ACS Photonics
7
(
2
),
488
498
(
2020
).
45.
J. E.
Muench
,
A.
Ruocco
,
M. A.
Giambra
,
V.
Miseikis
,
D.
Zhang
,
J.
Wang
,
Y.
Watson
,
G.
Park
,
S.
Akhavan
,
V.
Sorianello
,
M.
Midrio
,
A.
Tomadin
,
C.
Coletti
,
M.
Romagnoli
,
A. C.
Ferrari
, and
I.
Goykhman
, “
Waveguide-integrated, plasmonic enhanced graphene photodetectors
,”
Nano Lett.
19
(
11
),
7632
7644
(
2019
).
46.
S.
Marconi
,
M. A.
Giambra
,
A.
Montanaro
,
V.
Miseikis
,
S.
Soresi
,
S.
Tirelli
,
P.
Galli
,
F.
Buchali
,
W.
Templ
,
C.
Coletti
,
V.
Sorianello
, and
M.
Romagnoli
, arXiv:2006.01481.
47.
V.
Miseikis
,
S.
Marconi
,
M. A.
Giambra
,
A.
Montanaro
,
L.
Martini
,
F.
Fabbri
,
S.
Pezzini
,
G.
Piccinini
,
S.
Forti
,
B.
Terres
,
I.
Goykhman
,
L.
Hamidouche
,
P.
Legagneux
,
V.
Sorianello
,
A. C.
Ferrari
,
F. H. L.
Koppens
,
M.
Romagnoli
, and
C.
Coletti
, “
Ultrafast, zero-bias, graphene photodetectors with polymeric gate dielectric on passive photonic waveguides
,”
ACS Nano
14
,
11190
11204
(
2020
).
48.
J.
Guo
,
J.
Li
,
C.
Liu
,
Y.
Yin
,
W.
Wang
,
Z.
Ni
,
Z.
Fu
,
H.
Yu
,
Y.
Xu
,
Y.
Shi
,
Y.
Ma
,
S.
Gao
,
L.
Tong
, and
D.
Dai
, “
High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.5 μm
,”
Light: Sci. Appl.
9
,
29
(
2020
).
49.
S.
Yuan
,
R.
Yu
,
C.
Ma
,
B.
Deng
,
Q.
Guo
,
X.
Chen
,
C.
Li
,
C.
Chen
,
K.
Watanabe
,
T.
Taniguchi
,
F. J.
García de Abajo
, and
F.
Xia
, “
Room temperature graphene mid-infrared bolometer with a broad operational wavelength range
,”
ACS Photonics
7
,
1206
1215
(
2020
).
50.
A. K.
Yadav
,
S. M.
Khan
,
A.
Kundu
,
R.
Rani
,
N.
Soin
,
J.
McLaughlin
,
D. S.
Misra
, and
K. S.
Hazra
, “
Vertically aligned few-layered graphene-based non-cryogenic bolometer
,”
Carbon Res.
5
,
23
(
2019
).
51.
X.
Du
,
D. E.
Prober
,
H.
Vora
, and
C. B.
McKitterick
, “
Graphene-based bolometers
,”
Graphene 2D Mater.
1
,
1
22
(
2014
).
52.
U.
Sassi
,
R.
Parret
,
S.
Nanot
,
M.
Bruna
,
S.
Borini
,
D.
De Fazio
,
Z.
Zhao
,
E.
Lidorikis
,
F. H. L.
Koppens
,
A. C.
Ferrari
, and
A.
Colli
, “
Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance
,”
Nat. Commun.
8
,
14311
(
2017
).
53.
A.
Rogalski
,
Infrared Detectors
(
CRC Press
,
2011
).
54.
Ch. B.
McKitterick
,
D. E.
Prober
, and
B. S.
Karasik
, “
Performance of graphene thermal photon detectors
,”
J. Appl. Phys.
113
,
044512
(
2013
).
55.
M.
Freitag
,
T.
Low
,
W.
Zhu
,
H.
Yan
,
F.
Xia
, and
P.
Avouris
, “
Photocurrent in graphene harnesses by tunable intrinsic plasmons
,”
Nat. Commun.
4
,
1951
(
2013
).
56.
J.
Gosciniak
,
T.
Holmgaard
, and
S. I.
Bozhevolnyi
, “
Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides
,”
J. Lightwave Technol.
29
(
10
),
1473
1481
(
2011
).
57.
V. S.
Volkov
,
Z.
Han
,
M. G.
Nielsen
,
K.
Leosson
,
H.
Keshmiri
,
J.
Gosciniak
,
O.
Albrektsen
, and
S. I.
Bozhevolnyi
, “
Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths
,”
Opt. Lett.
36
(
21
),
4278
4280
(
2011
).
58.
Q.
Shao
,
G.
Liu
,
D.
Teweldebrhan
, and
A. A.
Balandin
, “
High-temperature quenching of electrical resistance in graphene interconnects
,”
Appl. Phys. Lett.
92
,
202108
(
2008
).
59.
Q.
Guo
,
R.
Yu
,
C.
Li
,
S.
Yuan
,
B.
Deng
,
F. J. B.
de Abajo
, and
F.
Xia
, “
Efficient electrical detection of mid-infrared graphene plasmons at room temperature
,”
Nat. Mater.
17
,
986
992
(
2018
).
60.
J.
Yan
,
M.-H.
Kim
,
J. A.
Elle
,
A. B.
Sushkov
,
G. S.
Jenkins
,
H. M.
Milchberg
,
M. S.
Fuhrer
, and
H. D.
Drew
, “
Dual-gated bilayer graphene hot-electron bolometer
,”
Nat. Nanotechnol.
7
,
472
478
(
2012
).
61.
J. C. W.
Song
,
M. S.
Rudner
,
Ch. M.
Marcus
, and
L. S.
Levitov
, “
Hot carrier transport and photocurrent response in graphene
,”
Nano Lett.
11
(
11
),
4688
4692
(
2011
).
62.
K. J.
Tielrooij
,
L.
Piatkowski
,
M.
Massicotte
,
A.
Woessner
,
Q.
Ma
,
Y.
Lee
,
K. S.
Myhro
,
C. N.
Lau
,
P.
Jarillo-Herrero
,
N. F.
van Hulst
, and
F. H. L.
Koppens
, “
Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating
,”
Nat. Nanotechnol
10
,
437
443
(
2015
).
63.
Y.
Chen
,
Y.
Li
,
Y.
Zhao
,
H.
Zhou
, and
H.
Zhu
, “
Highly efficient hot electron harvesting from graphene before electron-hole thermalization
,”
Sci. Adv.
5
,
eaax9958
(
2019
).
64.
J. C. W.
Song
and
L. S.
Levitov
, “
Energy flows in graphene: Hot carrier dynamics and cooling
,”
J. Phys.: Condens. Matter
27
,
164201
(
2015
).
65.
Q.
Ma
,
N. M.
Gabor
,
T. I.
Andersen
,
N. L.
Nair
,
K.
Watanabe
,
T.
Taniguchi
, and
P.
Jarillo-Herrero
, “
Competing channels for hot-electron cooling in graphene
,”
Phys. Rev. Lett.
112
,
247401
(
2014
).
66.
E. J. C.
Dias
,
R.
Yu
, and
J. G.
de Abajo
, “
Thermal manipulation of plasmons in atomically thin films
,”
Light Sci. Appl.
9
,
87
(
2020
).
67.
Y.
Lin
,
Q.
Ma
,
P.-C.
Shen
,
B.
Ilyas
,
B.
Yaqing
,
A.
Liao
,
E.
Ergecen
,
B.
Han
,
N.
Mao
,
X.
Zhang
,
X.
Ji
,
Y.
Zhang
,
J.
Yin
,
S.
Huang
,
M.
Dresselhaus
,
N.
Gedik
,
P.
Jarillo-Herrero
,
X.
Ling
,
J.
Kong
, and
T.
Palacios
, “
Asymmetric hot-carrier thermalization and broadband photoresponse in graphene-2D semiconductor lateral hererojunctions
,”
Sci. Adv.
5
(
6
),
eaav1493
(
2019
).
68.
D. K.
Efetov
,
R.-J.
Shiue
,
Y.
Gao
,
B.
Skinner
,
E. D.
Walsh
,
H.
Choi
,
J.
Zheng
,
C.
Tan
,
G.
Grosso
,
C.
Peng
,
J.
Hone
,
K. C.
Fong
, and
D.
Englund
, “
Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out
,”
Nat. Nanotechnol.
13
,
797
801
(
2018
).
69.
E. D.
Walsh
,
D. K.
Efetov
,
G.-H.
Lee
,
M.
Heuck
,
J.
Crossno
,
T. A.
Ohki
,
P.
Kim
,
D.
Englund
, and
K. C.
Fong
, “
Graphene-based Josephson-junction single-photon detector
,”
Phys. Rev. Appl.
8
,
024022
(
2017
).
70.
J. K.
Viljas
and
T. T.
Heikkila
, “
Electron-phonon heat transfer in monolayer and bilayer graphene
,”
Phys. Rev. B
81
,
245404
(
2010
).
71.
M.
Kim
,
S. G.
Xu
,
A. I.
Berdyugin
,
A.
Principi
,
S.
Slizovskiy
,
N.
Xin
,
P.
Kumaravadivek
,
W.
Kuang
,
M.
Hamer
,
R.
Krishna Kumar
,
R. V.
Gorbachev
,
K.
Watanabe
,
T.
Taniguchi
,
I. V.
Grigorieva
,
V. I.
Fal’ko
,
M.
Polini
, and
A. K.
Geim
, “
Control of electron-electron interaction in graphene by proximity screenings
,”
Nat. Commun.
11
,
2339
(
2020
).
72.
M. M.
Fogler
,
D. S.
Novikov
,
L. I.
Glazman
, and
B. I.
Shklowskii
, “
Effect of disorder on a graphene p-n junction
,”
Phys. Rev. B
77
,
075420
(
2008
).
You do not currently have access to this content.