The performance of a recently proposed integrated graphene-bolometric photodetector is assessed. The responsivity of hundreds of A/W and speed on the scale of hundreds of GHz are predicted. The impressive performance is attributed to the small length over which the energy is absorbed by graphene. The short length leads to a highly enhanced energy density, which causes the increase of the electron temperature in graphene. The model has been validated against recently published experimental results from high-speed graphene photodetectors and found to be in good agreement.
REFERENCES
1.
Cisco
, Cisco Annual Internet Report (2018–2023), Cisco 1–41 (2020), available at https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.2.
P
. Dong
, K. W.
Kim
, A.
Melikyan
, and Y.
Baeyens
, “Silicon photonics: A scaling technology for communications and interconnects,” in Technical Digest—International Electron Devices Meeting, IEDM, 2018 December (IEEE, 2019), pp. 23.4.1–23.4.4.3.
D.
Thomson
, A.
Zilkie
, J. E.
Bowers
, T.
Komljenovic
, G. T.
Reed
, L.
Vivien
, D.
Marris-Morini
, E.
Cassan
, L.
Virot
, J. M.
Fedeli
, and J. M.
Hartmann
, “Roadmap on silicon photonics
,” J. Opt.
18
, 073003
(2016
). 4.
A. K.
Geim
and K. S.
Novoselov
, “The rise of graphene
,” Nat. Mater.
6
, 183
–191
(2007
). 5.
A. H.
Castro Neto
, F.
Guinea
, N. M. R.
Peres
, K. S.
Novoselov
, and A. K.
Geim
, “The electronic properties of graphene
,” Rev. Mod. Phys.
81
, 109
–162
(2009
). 6.
F.
Bonaccorso
, Z.
Sun
, T.
Hasan
, and A. C.
Ferrari
, “Graphene photonics and optoelectronics
,” Nat. Photonics
4
, 611
–622
(2010
). 7.
M.
Romagnoli
, V.
Sorianello
, M.
Midrio
, F. H. L.
Koppens
, C.
Huyghebaert
, D.
Neumaier
, P.
Galli
, W.
Templ
, A.
D’Errico
, and A. C.
Ferrari
, “Graphene-based integrated photonics for next-generation datacom and telecom
,” Nat. Rev. Mater.
3
, 392
–414
(2018
). 8.
J. M.
Dawlaty
, S.
Shivaraman
, M.
Chandrashekhar
, F.
Rana
, and M. G.
Spencer
, “Measurement of ultrafast carrier dynamics in epitaxial graphene
,” Appl. Phys. Lett.
92
, 042116
(2008
). 9.
A.
Lucas
and K. C.
Fong
, “Hydrodynamics of electrons in graphene
,” J. Phys.: Condens. Matter
30
, 053001
(2018
). 10.
K. I.
Bolotin
, K. J.
Sikes
, Z.
Jiang
, M.
Klima
, G.
Fudenberg
, J.
Hone
, P.
Kim
, and H. L.
Stormer
, “Ultrahigh electron mobility in suspended graphene
,” Solid State Commun.
146
, 351
–355
(2008
). 11.
M.
Freitag
, T.
Low
, F.
Xia
, and P.
Avouris
, “Photoconductivity of biased graphene
,” Nat. Photonics
7
, 53
–59
(2013
). 12.
A. N.
Grigorenko
, M.
Polini
, and K. S.
Novoselov
, “Graphene plasmonics
,” Nat. Photonics
6
, 749
–758
(2012
). 13.
A.
Pospischil
, M.
Humer
, M. M.
Furchi
, D.
Bachmann
, R.
Guider
, T.
Fromherz
, and T.
Mueller
, “CMOS-compatible graphene photodetector covering all optical communication bands
,” Nat. Photonics
7
, 892
(2013
). 14.
D.
Schall
, D.
Neumaier
, M.
Mohsin
, B.
Chmielak
, J.
Bolten
, C.
Porschatis
, A.
Prinzen
, C.
Matheisen
, W.
Kuebart
, B.
Junginger
, W.
Templ
, A. L.
Giesecke
, and H.
Kurz
, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems
,” ACS Photonics
1
(9
), 781
−896
(2014
). 15.
X.
Gan
, R.-J.
Shiue
, Y.
Gao
, I.
Meric
, T. F.
Heinz
, K.
Shepard
, J.
Hone
, S.
Assefa
, and D.
Englund
, “Chip-integrated ultrafast graphene photodetector with high responsivity
,” Nat. Photonics
7
(11
), 883
–887
(2013
). 16.
F.
Xia
, T.
Mueller
, Y. M.
Lin
, A.
Valdes-Garcia
, and P.
Avouris
, “Ultrafast graphene photodetector
,” Nat. Nanotechnol
4
, 839
–843
(2009
). 17.
F. H. L.
Koppens
, T.
Mueller
, Ph.
Avouris
, A. C.
Ferrari
, M. S.
Vitiello
, and M.
Polini
, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems
,” Nat. Nanotechnol.
9
, 780
–793
(2014
). 18.
F.
Luo
, M.
Zhu
, Y.
Tan
, H.
Sun
, W.
Luo
, G.
Peng
, Z.
Zhu
, X.-A.
Zhang
, and S.
Qin
, “High responsivity graphene photodetectors from visible to near-infrared by photogating effect
,” AIP Adv.
8
, 115106
(2018
). 19.
R.-Y.
Shiue
, Y.
Gao
, Y.
Wang
, C.
Peng
, A. D.
Robertson
, D. K.
Efetov
, S.
Assefa
, F. H. L.
Koppens
, J.
Hone
, and D.
Englund
, “High-responsivity graphene-boron nitride photodetector and autocorrelator in a silicon photonic integrated circuits
,” Nano. Lett.
15
(11
), 7288
–7293
(2015
). 20.
Y.
Ding
, Z.
Cheng
, X.
Zhu
, K.
Yvind
, J.
Dong
, M.
Galili
, H.
Hu
, N. A.
Mortensen
, S.
Xiao
, and L. K.
Oxenlowe
, “Ultras-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz
,” Nanophotonics
9
(2
), 317
–325
(2020
). 21.
A.
Urich
, K.
Unterrainer
, and T.
Mueller
, “Intrinsic response time of graphene photodetectors
,” Nano Lett.
11
, 2804
–2808
(2011
). 22.
T. J.
Yoo
, Y. J.
Kim
, S. K.
Lee
, Ch. G.
Kang
, K. E.
Chang
, H. J.
Hwang
, N.
Revannath
, and B. H.
Lee
, “Zero-bias operation of CVD graphene photodetector with asymmetric metal contacts
,” ACS Photonics
5
, 365
–370
(2018
). 23.
D.
De Fazio
, B.
Uzlu
, I.
Torre
, C.
Monasterio
, S.
Gupta
, T.
Khodkov
, Y.
Bi
, Z.
Wang
, M.
Otto
, M. C.
Lemme
, S.
Goossens
, D.
Neumaier
, and F. H. L.
Koppens
, “Graphene-quantum dots hybrid photodetectors with low dark-current readout
,” ACS Nano
14
, 11897
–11905
(2020
). 24.
A.
Dorodnyy
, Y.
Salamin
, P.
Ma
, J. V.
Plestina
, N.
Lassaline
, D.
Mikulik
, P.
Romero-Gomez
, A.
Fonrcuberta i Morral
, and J.
Leuthold
, “Plasmonic photodetectors
,” IEEE J. Sel. Top. Quantum Electron.
24
(6
), 1
–13
(2018
). 25.
S. M.
Koepfli
, M.
Baumann
, S.
Giger
, K.
Keller
, Y.
Horst
, Y.
Salamin
, Y.
Fedoryshyn
, and J.
Leuthold
, “High-speed graphene photodetection: 300 GHz is not the limit
,” in 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
(IEEE, 2021). 26.
J.
Gosciniak
and D. T. H.
Tan
, “Theoretical investigation of graphene-based photonic modulators
,” Sci. Rep.
3
, 1897
(2013
). 27.
D.
Ansell
, I. P.
Radko
, Z.
Han
, F. J.
Rodriguez
, S. I.
Bozhevolnyi
, and A. N.
Grigorenko
, “Hybrid graphene plasmonic waveguide modulators
,” Nat. Commun.
6
, 8846
(2015
). 28.
M.
Ayata
, Y.
Fedoryshyn
, W.
Heni
, B.
Baeuerle
, A.
Josten
, M.
Zahner
, U.
Koch
, Y.
Salamin
, C.
Hoessbacher
, C.
Haffner
, D. L.
Elder
, L. R.
Dalton
, and J.
Leuthold
, “High-speed plasmonic modulator in a single metal layer
,” Science
358
, 630
–632
(2017
). 29.
R.
Amin
, M.
Zhizhen
, R.
Maiti
, M.
Miscuglio
, H.
Dalir
, J. B.
Khurgin
, and V. J.
Sorger
, arXiv:1812.11096.30.
M.
Piels
and J. E.
Bowers
, “Photodetectors for silicon photonic integrated circuits
,” in Photodetectors
, edited by B.
Nabet
(Woodhead Publishing
, 2018
), pp. 3
–20
.31.
J.
Leuthold
, C.
Hoessbacher
, S.
Muehlbrandt
, A.
Melikyan
, M.
Kohl
, C.
Koos
, W.
Freude
, V.
Dolores-Calzadilla
, M.
Smit
, I.
Suarez
, J.
Martínez-Pastor
, E. P.
Fitrakis
, and I.
Tomkos
, “Plasmonic communications: Light on a wire
,” Opt. Photonics
24
(5
), 28
–35
(2013
). 32.
J. B.
Khurgin
, “Relative merits of phononics vs. Plasmonics: The energy balance approach
,” Nanophotonics
7
(1
), 305
–316
(2018
). 33.
J. A.
Schuller
, E. S.
Barnard
, W.
Cai
, Y. C.
Jun
, J. S.
White
, and M. I.
Brongersma
, “Plasmonics for extreme light concentration and manipulation
,” Nat. Mater.
9
, 193
–204
(2010
). 34.
P.
Ma
, Y.
Salamin
, B.
Baeuerle
, A.
Josten
, W.
Heni
, A.
Emboras
, and J.
Leuthold
, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size
,” ACS Photonics
6
, 154
–161
(2019
). 35.
J.
Gosciniak
and J. B.
Khurgin
, “On-chip ultrafast plasmonic graphene hot electron bolometric photodetector
,” ACS Omega
5
(24
), 14711
–14719
(2020
). 36.
J.
Gosciniak
, F. B.
Atar
, B.
Corbett
, and M.
Rasras
, “Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride
,” Sci. Rep.
9
(1
), 6048
(2019
). 37.
J.
Gosciniak
, F. B.
Atar
, B.
Corbett
, and M.
Rasras
, “CMOS-compatible titanium nitride for on-chip plasmonic Schottky photodetectors
,” ACS Omega
4
(17
), 17223
–17229
(2019
). 38.
S.
Muehlbrandt
, A.
Melikyan
, T.
Harter
, K.
Kohnle
, A.
Muslija
, P.
Vincze
, S.
Wolf
, P.
Jakobs
, Y.
Fedoryshyn
, W.
Freude
, J.
Leuthold
, C.
Koos
, and M.
Kohl
, “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception
,” Optica
3
(7
), 741
–747
(2016
). 39.
I.
Goykhman
, U.
Sassi
, B.
Desiatov
, N.
Mazurski
, S.
Milana
, D.
de Fazio
, A.
Eiden
, J.
Khurgin
, J.
Shappir
, U.
Levy
, and A. C.
Ferrari
, “On-chip integrated, silicon–graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain
,” Nano Lett.
16
(5
), 3005
–3013
(2016
). 40.
J.
Gosciniak
and M.
Rasras
, “High-bandwidth and high-responsivity waveguide-integrated plasmonic germanium photodetector
,” J. Opt. Soc. Am. B
36
(9
), 2481
–2491
(2019
). 41.
Y.
Salamin
, P.
Ma
, B.
Baeuerle
, A.
Emboras
, Y.
Fedoryshyn
, W.
Heni
, B.
Cheng
, A.
Josten
, and J.
Leuthold
, “100 GHz plasmonic photodetector
,” ACS Photonics
5
, 3291
–3297
(2018
). 42.
D. A. B.
Miller
, “Attojoule optoelectronics for low-energy information processing and communications
,” J. Lightwave Technol.
35
, 346
–396
(2017
). 43.
Z.
Ma
, K.
Kikunage
, H.
Wang
, S.
Sun
, R.
Amin
, R.
Maiti
, M. H.
Tahersima
, H.
Dalir
, M.
Miscuglio
, and V. J.
Sorger
, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity
,” ACS Photonics
7
, 932
–940
(2020
). 44.
J.
Gosciniak
, M.
Rasras
, and J.B.
Khurgin
, “Ultrafast plasmonic graphene photodetector based on the channel photothermoelectric effect
,” ACS Photonics
7
(2
), 488
–498
(2020
). 45.
J. E.
Muench
, A.
Ruocco
, M. A.
Giambra
, V.
Miseikis
, D.
Zhang
, J.
Wang
, Y.
Watson
, G.
Park
, S.
Akhavan
, V.
Sorianello
, M.
Midrio
, A.
Tomadin
, C.
Coletti
, M.
Romagnoli
, A. C.
Ferrari
, and I.
Goykhman
, “Waveguide-integrated, plasmonic enhanced graphene photodetectors
,” Nano Lett.
19
(11
), 7632
–7644
(2019
). 46.
S.
Marconi
, M. A.
Giambra
, A.
Montanaro
, V.
Miseikis
, S.
Soresi
, S.
Tirelli
, P.
Galli
, F.
Buchali
, W.
Templ
, C.
Coletti
, V.
Sorianello
, and M.
Romagnoli
, arXiv:2006.01481.47.
V.
Miseikis
, S.
Marconi
, M. A.
Giambra
, A.
Montanaro
, L.
Martini
, F.
Fabbri
, S.
Pezzini
, G.
Piccinini
, S.
Forti
, B.
Terres
, I.
Goykhman
, L.
Hamidouche
, P.
Legagneux
, V.
Sorianello
, A. C.
Ferrari
, F. H. L.
Koppens
, M.
Romagnoli
, and C.
Coletti
, “Ultrafast, zero-bias, graphene photodetectors with polymeric gate dielectric on passive photonic waveguides
,” ACS Nano
14
, 11190
–11204
(2020
). 48.
J.
Guo
, J.
Li
, C.
Liu
, Y.
Yin
, W.
Wang
, Z.
Ni
, Z.
Fu
, H.
Yu
, Y.
Xu
, Y.
Shi
, Y.
Ma
, S.
Gao
, L.
Tong
, and D.
Dai
, “High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.5 μm
,” Light: Sci. Appl.
9
, 29
(2020
). 49.
S.
Yuan
, R.
Yu
, C.
Ma
, B.
Deng
, Q.
Guo
, X.
Chen
, C.
Li
, C.
Chen
, K.
Watanabe
, T.
Taniguchi
, F. J.
García de Abajo
, and F.
Xia
, “Room temperature graphene mid-infrared bolometer with a broad operational wavelength range
,” ACS Photonics
7
, 1206
–1215
(2020
). 50.
A. K.
Yadav
, S. M.
Khan
, A.
Kundu
, R.
Rani
, N.
Soin
, J.
McLaughlin
, D. S.
Misra
, and K. S.
Hazra
, “Vertically aligned few-layered graphene-based non-cryogenic bolometer
,” Carbon Res.
5
, 23
(2019
). 51.
X.
Du
, D. E.
Prober
, H.
Vora
, and C. B.
McKitterick
, “Graphene-based bolometers
,” Graphene 2D Mater.
1
, 1
–22
(2014
). 52.
U.
Sassi
, R.
Parret
, S.
Nanot
, M.
Bruna
, S.
Borini
, D.
De Fazio
, Z.
Zhao
, E.
Lidorikis
, F. H. L.
Koppens
, A. C.
Ferrari
, and A.
Colli
, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance
,” Nat. Commun.
8
, 14311
(2017
). 53.
54.
Ch. B.
McKitterick
, D. E.
Prober
, and B. S.
Karasik
, “Performance of graphene thermal photon detectors
,” J. Appl. Phys.
113
, 044512
(2013
). 55.
M.
Freitag
, T.
Low
, W.
Zhu
, H.
Yan
, F.
Xia
, and P.
Avouris
, “Photocurrent in graphene harnesses by tunable intrinsic plasmons
,” Nat. Commun.
4
, 1951
(2013
). 56.
J.
Gosciniak
, T.
Holmgaard
, and S. I.
Bozhevolnyi
, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides
,” J. Lightwave Technol.
29
(10
), 1473
–1481
(2011
). 57.
V. S.
Volkov
, Z.
Han
, M. G.
Nielsen
, K.
Leosson
, H.
Keshmiri
, J.
Gosciniak
, O.
Albrektsen
, and S. I.
Bozhevolnyi
, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths
,” Opt. Lett.
36
(21
), 4278
–4280
(2011
). 58.
Q.
Shao
, G.
Liu
, D.
Teweldebrhan
, and A. A.
Balandin
, “High-temperature quenching of electrical resistance in graphene interconnects
,” Appl. Phys. Lett.
92
, 202108
(2008
). 59.
Q.
Guo
, R.
Yu
, C.
Li
, S.
Yuan
, B.
Deng
, F. J. B.
de Abajo
, and F.
Xia
, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature
,” Nat. Mater.
17
, 986
–992
(2018
). 60.
J.
Yan
, M.-H.
Kim
, J. A.
Elle
, A. B.
Sushkov
, G. S.
Jenkins
, H. M.
Milchberg
, M. S.
Fuhrer
, and H. D.
Drew
, “Dual-gated bilayer graphene hot-electron bolometer
,” Nat. Nanotechnol.
7
, 472
–478
(2012
). 61.
J. C. W.
Song
, M. S.
Rudner
, Ch. M.
Marcus
, and L. S.
Levitov
, “Hot carrier transport and photocurrent response in graphene
,” Nano Lett.
11
(11
), 4688
–4692
(2011
). 62.
K. J.
Tielrooij
, L.
Piatkowski
, M.
Massicotte
, A.
Woessner
, Q.
Ma
, Y.
Lee
, K. S.
Myhro
, C. N.
Lau
, P.
Jarillo-Herrero
, N. F.
van Hulst
, and F. H. L.
Koppens
, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating
,” Nat. Nanotechnol
10
, 437
–443
(2015
). 63.
Y.
Chen
, Y.
Li
, Y.
Zhao
, H.
Zhou
, and H.
Zhu
, “Highly efficient hot electron harvesting from graphene before electron-hole thermalization
,” Sci. Adv.
5
, eaax9958
(2019
). 64.
J. C. W.
Song
and L. S.
Levitov
, “Energy flows in graphene: Hot carrier dynamics and cooling
,” J. Phys.: Condens. Matter
27
, 164201
(2015
). 65.
Q.
Ma
, N. M.
Gabor
, T. I.
Andersen
, N. L.
Nair
, K.
Watanabe
, T.
Taniguchi
, and P.
Jarillo-Herrero
, “Competing channels for hot-electron cooling in graphene
,” Phys. Rev. Lett.
112
, 247401
(2014
). 66.
E. J. C.
Dias
, R.
Yu
, and J. G.
de Abajo
, “Thermal manipulation of plasmons in atomically thin films
,” Light Sci. Appl.
9
, 87
(2020
). 67.
Y.
Lin
, Q.
Ma
, P.-C.
Shen
, B.
Ilyas
, B.
Yaqing
, A.
Liao
, E.
Ergecen
, B.
Han
, N.
Mao
, X.
Zhang
, X.
Ji
, Y.
Zhang
, J.
Yin
, S.
Huang
, M.
Dresselhaus
, N.
Gedik
, P.
Jarillo-Herrero
, X.
Ling
, J.
Kong
, and T.
Palacios
, “Asymmetric hot-carrier thermalization and broadband photoresponse in graphene-2D semiconductor lateral hererojunctions
,” Sci. Adv.
5
(6
), eaav1493
(2019
). 68.
D. K.
Efetov
, R.-J.
Shiue
, Y.
Gao
, B.
Skinner
, E. D.
Walsh
, H.
Choi
, J.
Zheng
, C.
Tan
, G.
Grosso
, C.
Peng
, J.
Hone
, K. C.
Fong
, and D.
Englund
, “Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out
,” Nat. Nanotechnol.
13
, 797
–801
(2018
). 69.
E. D.
Walsh
, D. K.
Efetov
, G.-H.
Lee
, M.
Heuck
, J.
Crossno
, T. A.
Ohki
, P.
Kim
, D.
Englund
, and K. C.
Fong
, “Graphene-based Josephson-junction single-photon detector
,” Phys. Rev. Appl.
8
, 024022
(2017
). 70.
J. K.
Viljas
and T. T.
Heikkila
, “Electron-phonon heat transfer in monolayer and bilayer graphene
,” Phys. Rev. B
81
, 245404
(2010
). 71.
M.
Kim
, S. G.
Xu
, A. I.
Berdyugin
, A.
Principi
, S.
Slizovskiy
, N.
Xin
, P.
Kumaravadivek
, W.
Kuang
, M.
Hamer
, R.
Krishna Kumar
, R. V.
Gorbachev
, K.
Watanabe
, T.
Taniguchi
, I. V.
Grigorieva
, V. I.
Fal’ko
, M.
Polini
, and A. K.
Geim
, “Control of electron-electron interaction in graphene by proximity screenings
,” Nat. Commun.
11
, 2339
(2020
). 72.
M. M.
Fogler
, D. S.
Novikov
, L. I.
Glazman
, and B. I.
Shklowskii
, “Effect of disorder on a graphene p-n junction
,” Phys. Rev. B
77
, 075420
(2008
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.