For a long time, dispersion is always an important issue in optics. In recent decades, metasurfaces with the excellent optical field manipulating performance have provided a new solution to realize dispersion management. However, existing strategies usually rely on numerous simulations to select appropriate nanostructures, which are not intuitive and time-consuming. Here, we theoretically analyzed the dispersion controlling mechanism of nanostructured metasurfaces based on the effective refractive index theory. By simultaneously controlling the basic phase and the phase–frequency slope, phase profiles of the dispersion-tailored metalens can be reproduced. Adopting this strategy, continuous achromatic and super-dispersive cylindrical metalenses were designed using a transmissive dielectric metasurface with simple nanostrips. Simulated result shows that, in the near-infrared band from 1200 to 1600 nm, the chromatic dispersion can be reduced to less than a quarter of the regular one for the achromatic metalens, while it has about two times increase for the super-dispersive metalens. In addition, the two different types of metalenses have high efficiency of above 60% and narrow full width at half maximum near the diffraction limit over the 400 nm near-infrared band. These extraordinary properties offer a broad application prospect for the metalens in the field of highly integrated imaging, multispectral detection, tomography, etc.

1.
P.
Genvet
,
F.
Capasso
,
F.
Aieta
,
M.
Khorasaninejad
, and
R.
Devlin
,
Optica
4
,
139
152
(
2017
).
2.
D.
Wen
and
K. B.
Crozier
,
APL Photonics
6
,
080902
(
2021
).
3.
M.
Khorasaninejad
,
W. T.
Chen
,
R. C.
Devlin
,
J.
Oh
,
A. Y.
Zhu
, and
F.
Capasso
,
Science
352
,
1190
1194
(
2016
).
4.
R.
Fu
,
Z.
Li
,
G.
Zheng
,
M.
Chen
,
Y.
Yang
,
J.
Tao
,
L.
Wu
, and
Q.
Deng
,
Opt. Express
27
,
12221
12230
(
2019
).
5.
R.
Yang
,
Y.
Shi
,
C.
Dai
,
C.
Wan
,
S.
Wan
, and
Z.
Li
,
Opt. Lett.
45
,
5640
5643
(
2020
).
6.
G.
Zheng
,
H.
Mühlenbernd
,
M.
Kenney
,
G.
Li
,
T.
Zentgraf
, and
S.
Zhang
,
Nat. Nanotechnol.
10
,
308
312
(
2015
).
7.
J.
Li
,
S.
Kamin
,
G.
Zheng
,
F.
Neubrech
,
S.
Zhang
, and
N.
Liu
,
Sci. Adv.
4
,
eaar6768
(
2018
).
8.
R.
Fu
,
L.
Deng
,
Z.
Guan
,
S.
Chang
,
J.
Tao
,
Z.
Li
, and
G.
Zheng
,
Photonics Res.
8
,
723
728
(
2020
).
9.
Z.
Li
,
C.
Chen
,
Z.
Guan
,
J.
Tao
,
S.
Chang
,
Q.
Dai
,
Y.
Xiao
,
Y.
Cui
,
Y.
Wang
,
S.
Yu
,
G.
Zheng
, and
S.
Zhang
,
Laser Photonics Rev.
14
,
2000032
(
2020
).
10.
S.
Sun
,
W.
Yang
,
C.
Zhang
,
J.
Jing
,
Y.
Gao
,
X.
Yu
,
Q.
Song
, and
S.
Xiao
,
ACS Nano
12
,
2151
2159
(
2018
).
11.
J.
Deng
,
L.
Deng
,
Z.
Guan
,
J.
Tao
,
G.
Li
,
Z.
Li
,
Z.
Li
,
S.
Yu
, and
G.
Zheng
,
Nano Lett.
20
,
1830
1838
(
2020
).
12.
Q.
Dai
,
N.
Zhou
,
L.
Deng
,
J.
Deng
,
Z.
Li
, and
G.
Zheng
,
Phys. Rev. Appl.
13
,
034002
(
2020
).
13.
P.
Zheng
,
Q.
Dai
,
Z.
Li
,
Z.
Ye
,
J.
Xiong
,
H.
Liu
,
G.
Zheng
, and
S.
Zhang
,
Sci. Adv.
7
,
eabg0363
(
2021
).
14.
X.
Chen
,
Y.
Zhang
,
L.
Huang
, and
S.
Zhang
,
Adv. Opt. Mater.
2
,
978
982
(
2014
).
15.
Z.
Wang
,
T.
Li
,
A.
Soman
,
D.
Mao
,
T.
Kananen
, and
T.
Gu
,
Nat. Commun.
10
,
3547
(
2019
).
16.
Q.
Dai
,
Z.
Li
,
L.
Deng
,
N.
Zhou
,
J.
Deng
,
J.
Tao
, and
G.
Zheng
,
Opt. Lett.
45
,
3773
3776
(
2020
).
17.
X.
Shan
,
Z.
Li
,
L.
Deng
, and
Q.
Dai
,
Opt. Lett.
45
,
1902
1905
(
2020
).
18.
K. T. P.
Lim
,
H.
Liu
,
Y.
Liu
, and
J. K. W.
Yang
,
Nat. Commun.
10
,
25
(
2019
).
19.
Z.
Li
,
S.
Yu
, and
G.
Zheng
,
Nanophotonics
9
,
3699
3731
(
2020
).
20.
X.
Shan
,
L.
Deng
,
Q.
Dai
,
Z.
Zhou
,
C.
Liang
,
Z.
Li
, and
G.
Zheng
,
Opt. Express
28
,
26359
26369
(
2020
).
21.
Q.
Dai
,
Z.
Guan
,
S.
Chang
,
L.
Deng
,
J.
Tao
,
Z.
Li
,
Z.
Li
,
S.
Yu
,
G.
Zheng
, and
S.
Zhang
,
Adv. Funct. Mater.
30
,
2003990
(
2020
).
22.
J.
Li
,
Y.
Wang
,
C.
Chen
,
R.
Fu
,
Z.
Zhou
,
Z.
Li
,
G.
Zheng
,
S.
Yu
,
C.-W.
Qiu
, and
S.
Zhang
,
Adv. Mater.
33
,
2007507
(
2021
).
23.
X.
Ni
,
Z.
Wong
,
M.
Mrejen
,
Y.
Wang
, and
X.
Zhang
,
Science
349
,
1310
1314
(
2015
).
24.
L.
Hsu
,
A.
Ndao
, and
B.
Kanté
,
Opt. Lett.
44
,
2978
2981
(
2019
).
25.
Z.
Jiang
,
Q.
Liang
,
Z.
Li
,
T.
Chen
,
D.
Li
, and
Y.
Hao
,
Adv. Opt. Mater.
8
,
2000827
(
2020
).
26.
F.
Aieta
,
M. A.
Kats
,
P.
Genevet
, and
F.
Capasso
,
Science
347
,
1342
1345
(
2015
).
27.
M.
Khorasaninejad
,
A. Y.
Zhu
,
C.
Roques-Carmes
,
W. T.
Chen
,
J.
Oh
,
I.
Mishra
,
R. C.
Devlin
, and
F.
Capasso
,
Nano Lett.
16
,
7229
7234
(
2016
).
28.
J.
Hu
,
C. H.
Liu
,
X.
Ren
,
L. J.
Lauhon
, and
T. W.
Odom
,
ACS Nano
10
,
10275
10282
(
2016
).
29.
O.
Avayu
,
E.
Almeida
,
Y.
Prior
, and
T.
Ellenbogen
,
Nat. Commun.
8
,
14992
(
2017
).
30.
M.
Khorasaninejad
,
Z.
Shi
,
A. Y.
Zhu
,
W. T.
Chen
,
V.
Sanjeev
,
A.
Zaidi
, and
F.
Capasso
,
Nano Lett.
17
,
1819
1824
(
2017
).
31.
E.
Arbabi
,
A.
Arbabi
,
S. M.
Kamali
,
Y.
Horie
, and
A.
Faraon
,
Optica
4
,
625
632
(
2017
).
32.
S.
Wang
,
P.
Wu
,
V.
Su
,
Y.
Lai
,
C.
Chu
,
J.
Chen
,
S.
Lu
,
J.
Chen
,
B.
Xu
,
C.
Kuan
,
T.
Li
,
S.
Zhu
, and
D.
Tsai
,
Nat. Commun.
8
,
187
(
2017
).
33.
W. T.
Chen
,
A. Y.
Zhu
,
V.
Sanjeev
,
M.
Khorasaninejad
,
Z.
Shi
,
E.
Lee
, and
F.
Capasso
,
Nat. Nanotechnol.
13
,
220
226
(
2018
).
34.
S.
Wang
,
P. C.
Wu
,
V.-C.
Su
,
Y.-C.
Lai
,
M.-K.
Chen
,
H. Y.
Kuo
,
B. H.
Chen
,
Y. H.
Chen
,
T.-T.
Huang
,
J.-H.
Wang
,
R.-M.
Lin
,
C.-H.
Kuan
,
T.
Li
,
Z.
Wang
,
S.
Zhu
, and
D. P.
Tsai
,
Nat. Nanotechnol.
13
,
227
232
(
2018
).
35.
S.
Shrestha
,
A. C.
Overvig
,
M.
Lu
,
A.
Stein
, and
N.
Yu
,
Light Sci. Appl.
7
,
85
(
2018
).
36.
A.
Ndao
,
L.
Hsu
,
J.
Ha
,
J. H.
Park
,
C. C.
Hasnain
, and
B.
Kante
,
Nat. Commun.
11
,
3205
(
2020
).
37.
M.
Khorasaninejad
,
W. T.
Chen
,
J.
Oh
, and
F.
Capasso
,
Nano Lett.
16
,
3732
3737
(
2016
).
38.
J.
Ha
,
A.
Ndao
,
L.
Hsu
,
J.
Park
, and
B.
Kante
,
Opt. Express
26
,
23178
23184
(
2018
).
39.
K.
Zhang
and
D.
Li
,
Electromagnetic Theory for Microwaves and Optoelectronics
(
Springer-Verlag
,
1998
).
You do not currently have access to this content.