The laser heterodyne photothermal displacement (LH-PD) method was used to characterize the nonradiative recombination centers of semiconductors, such as defects and deep-lying electronic levels. When a semiconductor surface is irradiated with a modulated continuous wave laser, the irradiated area is periodically heated and expanded owing to the nonradiative recombination of the photoexcited carriers. The LH-PD can measure an absolute value of surface displacement and its time variation at various excitation beam frequencies (fex). Si and GaAs substrate samples were used to confirm the usefulness of the proposed method. The obtained time variation of the surface displacement was well explained by theoretical calculations considering the carrier generation, diffusion, recombination, heat diffusion, and generated thermal strain. Because nonradiative carrier recombination generates local heat at defects in semiconductors, the LH-PD technique is useful for analyzing defect distributions. Additionally, measurements of intentional Fe-contaminated Si samples confirmed that this technique is suitable for defect mapping. Displacement mapping with changing fex suggests the potential to measure the distribution of nonradiative recombination centers in the sample depth direction.

1.
A.
Rosencwaig
and
A.
Gersho
,
J. Appl. Phys.
47
,
64
(
1976
).
2.
W.
Jackson
and
N. M.
Amer
,
J. Appl. Phys.
51
,
3343
(
1980
).
3.
S.
Horita
,
H.
Konishi
,
N.
Miyabo
, and
T.
Hata
,
Jpn. J. Appl. Phys.
33
,
3238
(
1994
).
4.
X.
Wang
,
H.
Hu
, and
X.
Xu
,
J. Heat Transfer
123
,
138
(
2001
).
5.
A.
Mandelis
,
J.
Batista
, and
D.
Shaughnessy
,
Phys. Rev. B
67
,
205208
(
2003
).
6.
W. B.
Jackson
,
N. M.
Amer
,
A. C.
Boccara
, and
D.
Fournier
,
Appl. Opt.
20
,
1333
(
1981
).
7.
M.
Sumiya
,
K.
Fukuda
,
H.
Iwai
,
T.
Yamaguchi
,
T.
Onuma
, and
T.
Honda
,
AIP Adv.
8
,
115225
(
2018
).
8.
T.
Ikari
and
A.
Fukuyama
, in
Progress in Photothermal and Photoacoustic Science and Technology. Semiconductors and Electronic Materials
, edited by
A.
Mandelis
(
SPIE
,
Bellingham, WA
,
2000
), p.
145
.
9.
T.
Ikari
,
K.
Imai
, and
A.
Ito
,
Appl. Phys. Lett.
82
,
3302
(
2003
).
10.
A.
Fukuyama
,
A.
Memon
,
K.
Sakai
,
Y.
Akashi
, and
T.
Ikari
,
J. Appl. Phys.
89
,
1751
(
2001
).
11.
J. T.
Fanton
and
G. S.
Kino
,
Appl. Phys. Lett.
51
,
66
(
1987
).
12.
S. A.
Carp
and
V.
Venugopalan
,
J. Biomed. Opt.
12
,
064001
(
2007
).
13.
T.
Požar
,
P.
Gregorčič
, and
J.
Možina
,
Appl. Phys. B
105
,
575
(
2011
).
14.
G. A. S.
Flizikowski
,
O. A.
Capeloto
,
V. G.
Camargo
,
B.
Anghinoni
,
M. L.
Baesso
,
L. C.
Malacarne
,
M. P.
Belançon
,
T.
Požar
, and
N. G. C.
Astrath
,
Opt. Express
28
,
7116
(
2020
).
15.
N. A.
Massie
,
R. D.
Nelson
, and
S.
Holly
,
Appl. Opt.
18
,
1797
(
1979
).
16.
D. C.
Su
,
M. H.
Chiu
, and
C.
Der Chen
,
J. Opt.
27
,
19
(
1996
).
17.
H.
Takamatsu
,
Y.
Nishimoto
, and
Y.
Nakai
,
Jpn. J. Appl. Phys.
29
,
2847
(
1990
).
18.
S.
Sumie
,
H.
Takamatsu
,
Y.
Nishimoto
,
T.
Horiuchi
,
H.
Nakayama
,
T.
Kanata
, and
T.
Nishino
,
Jpn. J. Appl. Phys.
31
,
3575
(
1992
).
19.
S.
Sumie
,
H.
Takamatsu
,
Y.
Nishimoto
,
Y.
Kawata
,
T.
Horiuchi
,
H.
Nakayama
,
T.
Kanata
, and
T.
Nishino
,
J. Appl. Phys.
74
,
6530
(
1993
).
20.
S.
Sumie
,
H.
Takamatsu
,
T.
Morimoto
,
Y.
Nishimoto
,
Y.
Kawata
,
T.
Horiuchi
,
H.
Nakayama
,
T.
Kita
, and
T.
Nishino
,
J. Appl. Phys.
76
,
5681
(
1994
).
21.
H.
Takamatsu
,
S.
Sumie
,
T.
Morimoto
,
Y.
Kawata
,
T.
Muraki
, and
T.
Hara
,
J. Appl. Phys.
78
,
1504
(
1995
).
22.
M. D.
Dramićanin
,
P. M.
Nikolić
,
Z. D.
Ristovski
,
D. G.
Vasiljević
, and
D. M.
Todorović
,
Phys. Rev. B
51
,
14226
(
1995
).
23.
K.
Hara
and
T.
Takahashi
,
Appl. Phys. Express
5
,
022301
(
2012
).
24.
J.
Younes
,
Z.
Harajili
,
M.
Soueidan
,
D.
Fabregue
,
Y.
Zaatar
, and
M.
Kazan
,
J. Appl. Phys.
127
,
173101
(
2020
).
25.
D.
Kiliani
,
G.
Micard
,
B.
Steuer
,
B.
Raabe
,
A.
Herguth
, and
G.
Hahn
,
J. Appl. Phys.
110
,
054508
(
2011
).
26.
J.
Härkönen
,
E.
Tuovinen
,
Z.
Li
,
P.
Luukka
,
E.
Verbitskaya
, and
V.
Eremin
,
Mater. Sci. Semicond. Process.
9
,
261
(
2006
).
27.
E.
Higashi
,
M.
Tajima
,
N.
Hoshino
,
T.
Hayashi
,
H.
Kinoshita
,
H.
Shiomi
, and
S.
Matsumoto
,
Mater. Sci. Semicond. Process.
9
,
53
(
2006
).
28.
H.
Sugimoto
,
M.
Inoue
,
M.
Tajima
,
A.
Ogura
, and
Y.
Ohshita
,
Jpn. J. Appl. Phys.
45
,
L641
(
2006
).
29.
K.
Lauer
,
A.
Laades
,
H.
Übensee
,
H.
Metzner
, and
A.
Lawerenz
,
J. Appl. Phys.
104
,
104503
(
2008
).
30.
A. A.
Istratov
,
H.
Hieslmair
, and
E. R.
Weber
,
Appl. Phys. A: Mater. Sci. Process.
69
,
13
(
1999
).
31.
M.
Itsumi
,
Appl. Phys. Lett.
63
,
1095
(
1993
).
32.
COMSOL AB, COMSOL Multiphysics® v. 5.6, see www.comsol.com. Stockholm, Sweden.
33.
H. P.
Langtangen
,
Computational Partial Differential Equations
, 2nd ed. (
Springer
,
Berlin
,
1999
), p.
260
.
34.
A.
Pinto Neto
,
H.
Vargas
,
N. F.
Leite
, and
L. C. M.
Miranda
,
Phys. Rev. B
40
,
3924
(
1989
).
35.
P. P.
Gonzalez-Borrero
,
G. V. B.
Lukasievicz
,
V. S.
Zanuto
,
N. G. C.
Astrath
, and
L. C.
Malacarne
,
J. Appl. Phys.
121
,
195101
(
2017
).
36.
G. A. S.
Flizikowski
,
B.
Anghinoni
,
J. H.
Rohling
,
M. P.
Belancon
,
R. S.
Mendes
,
M. L.
Baesso
,
L. C.
Malacarne
,
T.
Požar
,
S. E.
Bialkowski
, and
N. G. C.
Astrash
,
J. Appl. Phys.
128
,
044509
(
2020
).
37.
S. M.
Sze
and
K. K.
NG
,
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley & Sons
,
Hoboken
,
2007
), pp.
665
790
.
38.
Handbook of Optical Constants of Solids
, edited by
E. D.
Palic
(
Academic Press
,
Orlando
,
1985
), p.
439
, 565, 729, and 760.
39.
D. E.
Aspnes
and
A. A.
Studna
,
Phys. Rev. B
27
,
985
(
1983
).
40.
L.
Gan
,
B.
Ben-Nissan
, and
A.
Ben-David
,
Thin Solid Films
290–291
,
362
(
1996
).
41.
M.
Nomura
,
Y.
Kage
,
J.
Nakagawa
,
T.
Hori
,
J.
Maire
,
J.
Shiomi
,
R.
Anufriev
,
D.
Moser
, and
O.
Paul
,
Phys. Rev. B
91
,
205422
(
2015
).
42.
X.
Huang
,
D.
Ohori
,
R.
Yanagisawa
,
R.
Anufriev
,
S.
Samukawa
, and
M.
Nomura
,
ACS Appl. Mater. Interfaces
12
,
25478
(
2020
).
You do not currently have access to this content.