A detailed investigation of the structural and vibrational properties of various prestressed silicon nitride membranes patterned with one-dimensional photonic crystal structures is presented. The tensile stress related deformation of the structure in the vicinity of the patterned area is determined by atomic force microscopy scans, while the resonance frequencies and quality factors of the out-of-plane membrane vibrations are measured using optical interferometry. We show that these noninvasive measurements, combined with the results of finite element simulations, provide accurate information on the tensile stress, the elasticity modulus, and the density of these nanostructured thin films. The obtained results are interesting in two ways: first, they show that such highly reflective thin membranes already exploited in various photonics applications possess high-mechanical quality, which also makes them attractive for optomechanics and sensing applications. Second, they represent a nondestructive method to determine key material parameters, which can be applicable to a broad range of fragile nanostructured thin films.

1.
A. E.
Kaloyeros
,
F. A.
Jové
,
J.
Goff
, and
B.
Arkles
, “
Review—Silicon nitride and silicon nitride-rich thin film technologies: Trends in deposition techniques and related applications
,”
ECS J. Solid State Sci. Technol.
6
,
P691
(
2017
).
2.
A. E.
Kaloyeros
,
Y.
Pan
,
J.
Goff
, and
B.
Arkles
, “
Review—Silicon nitride and silicon nitride-rich thin film technologies: State-of-the-art processing technologies, properties, and applications
,”
ECS J. Solid State Sci. Technol.
9
,
063006
(
2020
).
3.
N.
Hegedüs
,
K.
Balàzsi
, and
C.
Balàzsi
, “
Silicon nitride and hydrogenated silicon nitride thin films: A review of fabrication methods and applications
,”
Materials
14
,
5658
(
2021
).
4.
C. J.
Chang-Hasnain
and
W.
Yang
, “
High-contrast gratings for integrated optoelectronics
,”
Adv. Opt. Photon.
4
,
379
440
(
2012
).
5.
N.
Yu
and
F.
Capasso
, “
Flat optics with designer metasurfaces
,”
Nat. Mat.
13
,
139
150
(
2014
).
6.
S.
Wang
and
R.
Magnusson
, “
Theory and applications of guided-mode resonance filters
,”
Appl. Opt.
32
,
2606
2613
(
1993
).
7.
G.
Quaranta
,
G.
Basset
,
O. J. F.
Martin
, and
B.
Gallinet
, “
Recent advances in resonant waveguide gratings
,”
Laser Photonics Rev.
12
,
1800017
(
2018
).
8.
U.
Kemiktarak
,
M.
Metcalfe
,
M.
Durand
, and
J.
Lawall
, “
Mechanically compliant grating reflectors for optomechanics
,”
Appl. Phys. Lett.
100
,
061124
(
2012
).
9.
C. H.
Bui
,
J.
Zheng
,
S. W.
Hoch
,
L. Y. T.
Lee
,
J. G. E.
Harris
, and
C. W.
Wong
, “
High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling
,”
Appl. Phys. Lett.
100
,
021110
(
2012
).
10.
P.-L.
Yu
,
K.
Cicak
,
N. S.
Kampel
,
Y.
Tsaturyan
,
T. P.
Purdy
,
R. W.
Simmonds
, and
C. A.
Regal
, “
A phononic bandgap shield for high-Q membrane microresonators
,”
Appl. Phys. Lett.
104
,
023510
(
2014
).
11.
U.
Kemiktarak
,
M.
Durand
,
M.
Metcalfe
, and
J.
Lawall
, “
Cavity optomechanics with sub-wavelength grating mirrors
,”
New J. Phys.
14
,
125010
(
2012
).
12.
R. A.
Norte
,
J. P.
Moura
, and
S.
Gröblacher
, “
Mechanical resonators for quantum optomechanics experiments at room temperature
,”
Phys. Rev. Lett.
116
,
021001
(
2016
).
13.
C.
Reinhardt
,
T.
Müller
,
A.
Bourassa
, and
J. C.
Sankey
, “
Ultralow-noise SiN trampoline resonators for sensing and optomechanics
,”
Phys. Rev. X
6
,
021001
(
2016
).
14.
X.
Chen
,
C.
Chardin
,
K.
Makles
,
C.
Caër
,
S.
Chua
,
R.
Braive
,
I.
Robert-Philip
,
T.
Briant
,
P.-F.
Cohadon
,
A.
Heidmann
,
T.
Jacqmin
, and
S.
Deleglise
, “
High-finesse Fabry-Pérot cavities with bidimensional Si3N4 photonic-crystal slabs
,”
Light Sci. Appl.
6
,
e16190
(
2017
).
15.
Y.
Tsaturyan
,
A.
Barg
,
E. S.
Polzik
, and
A.
Schliesser
, “
Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution
,”
Nat. Nanotech.
12
,
776
(
2017
).
16.
J. P.
Moura
,
R. A.
Norte
,
J.
Guo
,
C.
Schäfermeier
, and
S.
Gröblacher
, “
Centimeter-scale suspended photonic crystal mirrors
,”
Opt. Express
26
,
1895
1909
(
2018
).
17.
A.
Cernotik
,
A.
Dantan
, and
C.
Genes
, “
Cavity quantum electrodynamics with frequency-dependent reflectors
,”
Phys. Rev. Lett.
122
,
243601
(
2019
).
18.
O.
Kraft
and
C. A.
Volkert
, “
Mechanical testing of thin films and small structures
,”
Adv. Eng. Mater.
3
,
99
110
(
2001
).
19.
G.
Abadias
,
E.
Chason
,
J.
Keckes
,
M.
Sebastiani
,
G. B.
Thompson
,
E.
Barthel
,
G. L.
Doll
,
C. E.
Murray
,
C. H.
Stoessel
, and
L.
Martinu
, “
Review article: Stress in thin films and coatings: Current status, challenges, and prospects
,”
J. Vac. Sci. Technol. A
36
,
020801
(
2018
).
20.
O.
Tabata
,
K.
Kawahata
,
S.
Sugiyama
, and
I.
Igarashi
, “
Mechanical property measurements of thin films using load-deflection of composite rectangular membranes
,”
Sens. Actuators
20
,
135
141
(
1989
).
21.
J. A.
Taylor
, “
The mechanical properties and microstructure of plasma enhanced chemical vapor deposited silicon nitride thin films
,”
J. Vac. Sci. Technol. A
9
,
2464
(
1991
).
22.
R. A.
Stewart
,
J.
Kim
,
E. S.
Kim
,
R. M.
White
, and
R. S.
Muller
, “
Young’s modulus and residual stress of LPCVD silicon-rich silicon nitride determined from membrane deflection
,”
Sens. Mater.
2
,
285
298
(
1990
); available at https://sensors.myu-group.co.jp/article.php?ss=10059.
23.
J. G. E.
Gardeniers
,
H. A. C.
Tilmans
, and
C. C. G.
Visser
, “
LPCVD silicon-rich silicon nitride films for applications in micromechanics studied with statistical experimental design
,”
J. Vac. Sci. Technol. A
14
,
2879
(
1996
).
24.
B. K.
Yen
,
R. L.
White
,
R. J.
Waltman
,
Q.
Bai
,
D. C.
Miller
,
A. J.
Kellock
,
B.
Marchon
,
P. H.
Kasai
,
M. F.
Toney
,
B. R.
York
,
H.
Deng
,
Q.-F.
Xiao
, and
V.
Raman
, “
Microstructure and properties of ultra-thin amorphous silicon nitride protective coating
,”
J. Vac. Sci. Technol. A
21
,
1895
(
2003
).
25.
W.-H.
Chuang
,
T.
Luger
,
R. K.
Fettig
, and
R.
Ghodssi
, “
Mechanical property characterization of LPCVD silicon nitride thin films at cryogenic temperatures
,”
J. Microelectromech. Syst.
13
,
870
(
2004
).
26.
A.
Kaushik
,
H.
Kahn
, and
A. H.
Heuer
, “
Wafer-level mechanical characterization of silicon nitride MEMS
,”
J. Microelectromech. Syst.
14
,
359
(
2005
).
27.
H.
Huang
,
K.
Winchester
,
Y.
Liu
,
X. Z.
Hu
,
C. A.
Musca
,
J. M.
Dell
, and
L.
Faraone
, “
Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry–Pérot optical filters
,”
J. Micromech. Microeng.
15
,
608
614
(
2005
).
28.
Y.-R.
Kim
,
P.
Chen
,
M. J.
Aziz
,
D.
Branton
, and
J. J.
Vlassak
, “
Focused ion beam induced deflections of freestanding thin films
,”
J. Appl. Phys.
100
,
104322
(
2006
).
29.
H.
Huang
,
K. J.
Winchester
,
A.
Suvorova
,
B. R.
Lawn
,
Y.
Liu
,
X. Z.
Hu
,
J. M.
Dell
, and
L.
Faraone
, “
Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films
,”
Mat. Sci. Eng. A
435–436
,
453
459
(
2006
).
30.
P.
Martins
,
P.
Delobelle
,
C.
Malhaire
,
S.
Brida
, and
D.
Barbier
, “
Bulge test and AFM point deflection method, two technics for the mechanical characterisation of very low stiffness freestanding films
,”
Eur. Phys. J. Appl. Phys.
45
,
10501
(
2009
).
31.
Y.
Hwangbo
,
J.-M.
Park
,
W. L.
Brown
,
J.-H.
Goo
,
H.-J.
Lee
, and
S.
Hyun
, “
Effect of deposition conditions on thermo-mechanical properties of free standing silicon-rich silicon nitride thin film
,”
Microelectron. Eng.
95
,
34
41
(
2012
).
32.
R.
Huszank
,
L.
Csedreki
,
Z.
Kerész
, and
Z.
Török
, “
Determination of the density of silicon-nitride thin films by ion-beam analytical techniques (RBS, PIXE, STIM)
,”
J. Radioanal. Nucl. Chem.
307
,
341
346
(
2016
).
33.
T.
Capelle
,
Y.
Tsaturyan
,
A.
Barg
, and
A.
Schliesser
, “
Polarimetric analysis of stress anisotropy in nanomechanical silicon nitride resonators
,”
Appl. Phys. Lett.
110
,
181106
(
2017
).
34.
S. S.
Jugade
,
A.
Aggarwal
, and
A. K.
Naik
, “
Nanomechanical spectroscopy of ultrathin silicon nitride suspended membranes
,”
Eur. Phys. J. Appl. Phys.
94
,
2301
(
2021
).
35.
D.
Høj
,
F.
Wang
,
W.
Gao
,
U. B.
Hoff
,
O.
Sigmund
, and
U. L.
Andersen
, “
Ultra-coherent nanomechanical resonators based on inverse design
,”
Nat. Commun.
12
,
84
(
2021
).
36.
E.
Serra
,
A.
Borrielli
,
F.
Marin
,
F.
Marino
,
N.
Malossi
,
B.
Morana
,
P.
Piergentili
,
G. A.
Prodi
,
P. M.
Sarro
,
P.
Vezio
,
D.
Vitali
, and
M.
Bonaldi
, “
Silicon-nitride nanosensors toward room temperature quantum optomechanics
,”
J. Appl. Phys.
130
,
064503
(
2021
).
37.
G.
Conte
,
L.
Vicarelli
,
S.
Zanotto
, and
A.
Pitanti
, “Mechanical mode engineering with orthotropic metamaterial membranes,” arxiv:2202.13705 (2022).
38.
B.
Nair
,
A.
Naesby
,
B. R.
Jeppesen
, and
A.
Dantan
, “
Suspended silicon nitride thin films with enhanced and electrically tunable reflectivity
,”
Phys. Scr.
94
,
125013
(
2019
).
39.
A. A.
Darki
,
A.
Parthenopoulos
,
J. V.
Nygaard
, and
A.
Dantan
, “
Profilometry and stress analysis of suspended nanostructured thin films
,”
J. Appl. Phys.
129
,
065302
(
2021
).
40.
A.
Parthenopoulos
,
A. A.
Darki
,
B. R.
Jeppesen
, and
A.
Dantan
, “
Optical spatial differentiation using suspended subwavelength gratings
,”
Opt. Express
29
,
6481
6494
(
2021
).
41.
C.
Toft-Vandborg
,
A.
Parthenopoulos
,
A. A.
Darki
, and
A.
Dantan
, “
Collimation and finite-size effects in suspended resonant guided-mode gratings
,”
J. Opt. Soc. Am. A
38
,
1714
1725
(
2021
).
42.
A. A.
Darki
,
S. P.
Madsen
, and
A.
Dantan
, “
Polarization-independent optical spatial differentiation with a doubly-resonant one-dimensional guided-mode grating
,”
Opt. Express
30
,
3962
(
2022
).
43.
A.
Naesby
,
S.
Naserbakht
, and
A.
Dantan
, “
Effects of pressure on suspended micromechanical membrane arrays
,”
Appl. Phys. Lett.
111
,
201103
(
2017
).
44.
A.
Naesby
and
A.
Dantan
, “
Microcavities with suspended subwavelength structured mirrors
,”
Opt. Express
26
,
29886
29894
(
2018
).
45.
J. D.
Thompson
,
B. M.
Zwickl
,
A. M.
Jayich
,
F.
Marquardt
,
S. M.
Girvin
, and
J. G. E.
Harris
, “
Strong dispersive coupling of a high-finesse cavity to a micromechanicall membrane
,”
Nature
452
,
72
75
(
2008
).
46.
D. J.
Wilson
,
C. A.
Regal
,
S. B.
Papp
, and
H. J.
Kimble
, “
Cavity optomechanics with stoichiometric SiN films
,”
Phys. Rev. Lett.
103
,
207204
(
2009
).
47.
A.
Xuereb
,
C.
Genes
, and
A.
Dantan
, “
Strong coupling and long-range collective interactions in optomechanical arrays
,”
Phys. Rev. Lett.
109
,
223601
(
2012
).
48.
B.
Nair
,
A.
Naesby
, and
A.
Dantan
, “
Optomechanical characterization of silicon nitride membrane arrays
,”
Opt. Lett.
42
,
1341
1344
(
2017
).
49.
C.
Gärtner
,
J. P.
Moura
,
W.
Haaxman
,
R. A.
Norte
, and
S.
Gröblacher
, “
Integrated optomechanical arrays of two high reflectivity SiN membranes
,”
Nano Lett.
18
,
7171
7175
(
2018
).
50.
P.
Piergentili
,
L.
Catalini
,
M.
Bawaj
,
S.
Zippilli
,
N.
Malossi
,
R.
Natali
,
D.
Vitali
, and
G.
Di Giuseppe
, “
Two-membrane cavity optomechanics
,”
New J. Phys.
20
,
083024
(
2018
).
51.
X.
Wei
,
J.
Sheng
,
C.
Yang
,
Y.
Wu
, and
H.
Wu
, “
Controllable two-membrane-in-the-middle cavity optomechanical system
,”
Phys. Rev. A
99
,
023851
(
2019
).
52.
C.
Yang
,
X.
Wei
,
J.
Sheng
, and
H.
Wu
, “
Phonon heat transport in cavity-mediated nanomechanical resonators
,”
Nat. Commun.
11
,
4656
(
2020
).
53.
J. M.
Fitzgerald
,
S. K.
Manjeshwar
,
W.
Wieczorek
, and
P.
Tassin
, “
Cavity optomechanics with photonic bound states in the continuum
,”
Phys. Rev. Res.
3
,
107
(
2021
).
55.
O.
Zienkiewicz
,
R.
Tayloer
, and
D.
Fox
,
The Finite Element Method for Solid and Structural Mechanics
, 7th ed. (
Butterworth-Heinemaan
,
Oxford
,
2014
).
56.
If the Poisson ratio ν is not known, the method discussed only provides information on the ratio E~=E/(1ν2).
57.
M.
Józwik
,
P.
Delobelle
,
C.
Gorecki
,
A.
Sabac
,
L.
Nieradko
,
C.
Meunier
, and
F.
Munnick
, “
Optomechanical characterization of compressively prestressed silicon oxynitride films deposited by plasma-enhanced chemical vapour deposition in silicon membranes
,”
Thin Solid Films
468
,
84
(
2004
).
58.
D. J.
Wilson
, Ph.D. thesis, California Institute of Technology, 2012.
You do not currently have access to this content.