We have calculated the time constants of the electron dynamics in traps in a metal–insulator–metal (MIM) plasmonic structure. Because of electron relaxation in metal, the surface plasmon polaritons decays into hot electrons near the surface of the metal, which facilitates the trap of electrons in the interfacial layer of the dielectric. We have calculated the capture and emission times separately as the electron does not follow the same mechanisms with the capture process when it is emitted from a trap at the metal/oxide interface. We have developed a quasi-two-dimensional treatment that has been modified from a previously used semiconductor/oxide junction by using Bardeen’s function to calculate the capture time. Various parameters including trap’s distance from the interface, temperature, voltage bias, and spectral nature of the hot electrons’ energy distribution influence the interaction between a plasmonic hot electron and a neutral near-interface trap in the capture process. On the one hand, the emission time is independent of the capture time, and it is determined by the tunneling time to the metal depending on the temperature and the energy difference between the trap energy levels (ground and excited states). We have showed that a wide range of capture times from seconds to picoseconds is possible for an interfacial trap at the room temperature due to the spectral energy distribution of hot electrons and dependence of the capture process on the losses in metals. On the other hand, the temperature plays the dominant role in the emission time. For the trap with 250 meV energy difference between its levels, the emission time is in the range of picosecond at room temperature. Therefore, the MIM plasmonic device can respond to a wide range of ac voltage frequencies including the ultra-fast domain. These interesting findings are useful to understand the ac response of the MIM plasmonic devices with applications in integrated photonics and ultra-fast optoelectronics.

1.
D.
Su
,
D. P.
Tsai
,
T.
Yen
, and
T.
Tanaka
,
ACS Sens.
4
,
2900
(
2019
).
2.
S. B.
Tooski
,
A.
Godarzi
,
M. Sh.
Solari
,
M.
Ramyar
, and
A.
Roohforouz
,
J. Appl. Phys.
110
,
034307
(
2011
).
3.
N.
Razmjooei
,
Y. H.
Ko
,
F. A.
Simlan
, and
R.
Magnusson
,
Opt. Express
29
,
19183
(
2021
).
4.
M.
Iwanaga
,
Sci. Technol. Adv. Mater.
13
,
053002
(
2016
).
5.
Y. H.
Ko
,
N.
Razmjooei
,
H.
Hemmati
, and
R.
Magnusson
,
Opt. Express
29
,
26971
(
2021
).
6.
D. E.
Chang
,
A. S.
Sørensen
,
E. A.
Demler
, and
M. D. A.
Lukin
,
Nat. Phys.
3
,
807
(
2007
).
7.
P.
Kolchin
,
R. F.
Oulton
, and
X.
Zhang
,
Phys. Rev. Lett.
106
,
113601
(
2011
).
8.
9.
H.
Shokri Kojori
,
J.
Yun
,
Y.
Paik
,
J.
Kim
,
W. A.
Anderson
, and
S. J.
Kim
,
Nano Lett.
16
,
250
(
2016
).
10.
D. E.
Chang
,
A. S.
Sørensen
,
P. R.
Hemmer
, and
M. D.
Lukin
,
Phys. Rev. Lett.
97
,
053002
(
2006
).
11.
A. V.
Akimov
,
A.
Mukherjee
,
C. L.
Yu
,
D. E.
Chang
,
A. S.
Zibrov
,
P. R.
Hemmer
,
H.
Park
, and
M. D.
Lukin
,
Nature
450
,
402
(
2007
).
12.
J. A.
Schuller
,
E. S.
Barnard
,
W.
Cai
,
Y. C.
Jun
,
J. S.
White
, and
M. L.
Brongersma
,
Nat. Mater.
9
(
3
),
193
(
2010
).
13.
D. J.
Bergman
and
M. I.
Stockman
,
Phys. Rev. Lett.
90
(
2
),
027402
(
2003
).
14.
F.
Marquier
,
C.
Sauvan
, and
J.
Greffet
,
ACS Photonics
4
(
9
),
2091
(
2017
).
15.
R.
Kolesov
,
Nat. Phys.
5
,
470
474
(
2009
).
16.
A.
Imamoglu
,
D. D.
Awschalom
,
G.
Burkard
,
D. P.
DiVincenzo
,
D.
Loss
,
M.
Sherwin
, and
A.
Small
,
Phys. Rev. Lett.
83
,
4204
(
1999
).
17.
W. P. E. M.
op ‘t Root
,
G. J. H.
Brussaard
,
P. W.
Smorenburg
, and
O. J.
Luiten
,
Nat. Commun.
7
,
13769
(
2016
).
18.
T. J.
Davis
,
D. E.
Gómez
, and
A.
Roberts
,
Nanophotonics
6
(
3
),
543
(
2016
).
19.
H.
Siampour
,
S.
Kumar
, and
S. I.
Bozhevolnyi
,
ACS Photonics
4
,
1879
(
2017
).
20.
Y.
Fang
and
M.
Sun
,
Light Sci. Appl.
4
,
e294
(
2015
).
21.
M. S.
Tame
,
K. R.
McEnery
,
Ş. K.
Özdemir
,
J.
Lee
,
S. A.
Maier
, and
M. S.
Kim
,
Nat. Phys.
9
,
329
(
2013
).
22.
A.
Archambault
,
F.
Marquier
, and
J.
Greffet
,
Phys. Rev. B
82
,
035411
(
2010
).
23.
T.
Gong
and
J. N.
Munday
,
J. Appl. Phys. Lett.
110
,
021117
(
2017
).
24.
A.
Melikyan
,
N.
Lindenmann
,
S.
Walheim
,
P. M.
Leufke
,
S.
Ulrich
,
J.
Ye
,
P.
Vincze
,
H.
Hahn
,
Th.
Schimmel
,
C.
Koos
,
W.
Freude
, and
J.
Leuthold
,
Opt. Express
19
,
8855
(
2011
).
25.
A.
Lotfiani
,
M.
Ghanaatshoar
, and
S. M.
Mohseni
,
IEEE Trans. Electron Devices
66
(
12
),
5215
(
2019
).
26.
M. R.
Singh
,
M. C.
Sekhar
,
S.
Balakrishnan
, and
S.
Masood
,
J. Appl. Phys.
122
,
034306
(
2017
).
27.
M. R.
Singh
and
K.
Black
,
J. Phys. Chem. C
122
,
26584
(
2018
).
28.
M. R.
Singh
and
P. D.
Persaud
,
J. Phys. Chem. C
124
,
6311
(
2020
).
29.
A. O.
Govorov
and
H.
Zhang
,
J. Phys. Chem. C
119
(
11
),
6181
(
2015
).
30.
A. O.
Govorov
,
H.
Zhang
, and
Y. K.
Gun ko
,
J. Phys. Chem. C
117
(
32
),
16616
(
2013
).
31.
L. S. V.
Besteiro
,
X.
Kong
,
Z.
Wang
,
G.
Hartland
, and
A. O.
Govorov
,
ACS Photonics
4
(
11
),
2759
(
2017
).
32.
W.
Li
and
J. G.
Valentine
,
Nanophotonics
6
,
177
(
2017
).
33.
P.
Reineck
,
D.
Brick
,
P.
Mulvaney
, and
U.
Bach
,
J. Phys. Chem. Lett.
7
(
20
),
4137
(
2016
).
34.
H. A.
Atwater
and
A.
Polman
,
Nat. Mater.
9
,
205
(
2010
).
35.
F.
Wang
and
N. A.
Melosh
,
Nat. Commun.
4
,
948
(
2013
).
36.
A. M.
Gobin
,
M. H.
Lee
,
N. J.
Halas
,
W. D.
James
,
R. A.
Drezek
, and
J. L.
West
,
Nano Lett.
7
,
1929
(
2007
).
37.
M.
Gao
,
P. K.
Nuo Connora
, and
G. W.
Ho
,
Energy Environ. Sci.
9
,
3151
(
2016
).
38.
A.
Bafekry
,
M.
Faraji
,
M. M.
Fadlallah
,
B.
Mortazavi
,
A.
Abdolahzadeh Ziabari
,
A.
Bagheri Khatibani
,
C.
Nguyen
,
M.
Ghergherehchi
, and
D.
Gogova
,
J. Phys. Chem. C
125
(
23
),
13067
(
2021
).
39.
A.
Bafekry
,
M.
Faraji
,
M. M.
Fadlallah
,
A.
Bagheri Khatibani
,
A.
Abdolahzadeh Ziabari
,
M.
Ghergherehchi
,
Sh.
Nedaei
,
S.
Farjami Shayesteh
, and
D.
Gogova
,
Appl. Surf. Sci.
559
,
149862
(
2021
).
40.
A.
Bafekry
,
S. F.
Shayesteh
, and
F. M.
Peeters
,
J. Appl. Phys.
126
(
21
),
215104
(
2019
).
41.
A.
Bafekry
,
C.
Stampfl
, and
F. M.
Peeters
,
Sci. Rep.
10
(
1
),
731
(
2020
).
42.
A.
Bafekry
,
S. F.
Shayesteh
, and
F. M.
Peeters
,
Phys. Chem. Chem. Phys.
21
(
37
),
21070
(
2020
).
43.
B. R.
Carvalho
,
Y.
Wang
,
K.
Fujisawa
,
T.
Zhang
,
E.
Kahn
,
I.
Bilgin
,
P. M.
Ajayan
,
A. M.
de Paula
,
M. A.
Pimenta
,
S.
Kar
,
V. H.
Crespi
,
M.
Terrones
, and
L. M.
Malard
,
Nano Lett.
20
,
284
(
2019
).
44.
C.
Hu
,
S. N. C.
Tam
,
F.
Hsu
,
P.
Ko
,
T.
Chan
, and
K.
Terrill
,
IEEE Trans. Electron Devices
32
(
2
),
375
(
1985
).
45.
D.
Veksler
,
G.
Bersuker
,
S.
Rumyantsev
,
M.
Shur
,
H.
Park
,
C.
Young
,
K. Y.
Lim
,
W.
Taylor
, and
R.
Jammy
, 2010 IEEE International Reliability Physics Symposium (IEEE, 2010), p. 73.
46.
H. H.
Mueller
and
M.
Schulz
,
J. Mater. Sci.: Mater. Electron.
6
,
65
(
1995
).
47.
P.
Narang
,
R.
Sundararaman
, and
H. A.
Atwater
,
Nanophotonics
5
,
96
(
2016
).
48.
Y.
Hori
,
Z.
Yatabe
, and
T.
Hashizume
,
J. Appl. Phys.
114
,
244503
(
2013
).
49.
T. W.
Hickmott
,
J. Appl. Phys.
89
,
5502
(
2001
).
50.
A.
Norrman
,
T.
Setal
, and
A. T.
Friberg
,
Opt. Express
22
,
4628
(
2014
).
51.
I.
Avrutsky
,
I.
Salakhutdinov
,
J.
Elser
, and
V.
Podolskiy
,
Phys. Rev. B
75
,
241402(R)
(
2007
).
52.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
53.
Q.
Liu
,
J. S.
Kee
, and
M. K.
Park
,
IEEE Photonics Technol. Lett.
25
,
1420
(
2013
).
54.
C.
Bonnelle
,
Phys. Rev. B
81
,
054307
(
2010
).
55.
B. K.
Ridley
,
Quantum Processes in Semiconductors
, 5th ed. (
Oxford University Press
,
2013
).
56.
D.
Veksler
,
G.
Bersuker
,
S.
Rumyantsev
,
M.
Shur
,
H.
Park
,
C.
Young
,
K. Y.
Lim
,
W.
Taylor
, and
R.
Jammy
, 2010 IEEE International Reliability Physics Symposium (IEEE, 2010).
57.
R.
Sundararaman
,
P.
Narang
,
A. S.
Jermyn
,
W. A.
Goddard
, and
H. A.
Atwater
,
Nat. Commun.
5
,
470
(
2014
).
58.
A.
Palma
,
A.
Godoy
,
J. A.
Jiménez-Tejada
,
J. E.
Carceller
, and
J. A.
López-Villanueva
,
Phys. Rev. B
56
,
9565
(
1997
).
59.
M.
Masuduzzaman
,
B.
Weir
, and
M.
Ashraful Alam
,
J. Appl. Phys.
111
,
074501
(
2012
).
60.
Z.
Ma
,
P.
Zhang
,
Y.
Wu
,
W.
Li
,
Y.
Zhuang
,
L.
Du
, and
J.
Bao
,
Semicond. Sci. Technol.
25
,
015007
(
2010
).
61.
M.
Schulz
,
J. Appl. Phys.
74
,
2649
(
1993
).
62.
X.
Li
,
J. B.
Chou
,
W. L.
Kwan
,
A. M.
Elsharif
, and
S.
Kim
,
Opt. Express
25
,
A264
(
2017
).
63.
S. V.
Boriskina
,
T. A.
Cooper
,
L.
Zeng
,
G.
Ni
,
J. K.
Tong
,
Y.
Tsurimaki
,
Y.
Huang
,
L.
Meroueh
,
G.
Mahan
, and
G.
Chen
,
Adv. Opt. Photon.
9
,
775
827
(
2017
).
64.
M.
Bernardi
,
J.
Mustafa
,
J.
Neaton
, and
S.
Louie
,
Nat. Commun.
6
,
824
(
2015
).
65.
T. J.
Davis
,
D. E.
Gómez
, and
K. C.
Vernon
,
Proc. SPIE
7404
,
740402
(
2009
).
66.
I.
Lundström
and
C.
Svensson
,
J. Appl. Phys.
43
,
5045
(
1972
).
67.
D.
Światła
and
W. M.
Bartczak
,
Phys. Rev. B
43
,
6776
(
1991
).
68.
K. P.
Cheung
,
D.
Veksler
, and
J. P.
Campbell
,
AIP Conf. Proc.
931
,
308
(
2007
).
69.
N. V.
Nguyen
,
O.
Kirillov
,
H. D.
Xiong
, and
J. S.
Suehle
, IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2014).
70.
W. B.
Fowler
,
J. K.
Rudra
,
M. E.
Zvanut
, and
F. J.
Feigl
,
Phys. Rev. B
41
,
8313
(
1990
).
71.
A. L.
McWhorter
, “1/f Noise and Germanium Surface Properties.” in Kingston, R.H., Ed., Semiconductor Surface Physics (University of Pennsylvania Press, Philadelphia, 1957) pp. 207–228.
72.
Q.
Yin
,
E.
Kioupakis
,
D.
Jena
, and
C. G.
Van de Walle
,
Phys. Rev. B
90
,
121201(R)
(
2014
).
73.
M.
Burla
,
C.
Hoessbacher
,
W.
Heni
,
C.
Haffner
,
Y.
Fedoryshyn
,
D.
Werner
,
T.
Watanabe
,
H.
Massler
,
D. L.
Elder
,
L. R.
Dalton
, and
J.
Leuthold
,
APL Photonics
4
,
056106
(
2019
).
74.
Y.
Salamin
,
P.
Ma
,
B.
Baeuerle
,
A.
Emboras
,
Y.
Fedoryshyn
,
W.
Heni
,
B.
Cheng
,
A.
Josten
, and
J.
Leuthold
,
ACS Photonics
5
,
3291
(
2018
).
75.
Semiconductor Physics and Devices: Basic Principles, edited by D. A. Neamen (McGraw-Hill, New York, 2012).
76.
A.
Bafekry
,
C. V.
Nguyen
,
A.
Goudarzi
,
M.
Ghergherehchi
, and
M.
Shafieirad
,
RSC Adv.
10
,
27743
(
2020
).
77.
J.
Smoliner
,
D.
Rakoczy
, and
M.
Kast
,
Rep. Prog. Phys.
67
,
1863
(
2004
).
78.
D. D.
Coon
,
Am. J. Phys.
34
,
240
(
1966
).
79.
S.
Faris
,
T.
Gustafson
, and
J.
Wiesner
,
IEEE J. Quantum Electron.
9
,
737
(
1973
).
80.
S.
Roya
,
S. P.
Duttaguptab
, and
R.
Desikand
,
Procedia Eng.
140
,
203
(
2016
).
81.
H.
Chalabi
,
D.
Schoen
, and
M. L.
Brongersma
,
Nano Lett.
14
,
1374
(
2014
).
82.
N.
Adelstein
,
D.
Lee
,
J. L.
DuBois
,
K. G.
Ray
,
J. B.
Varley
, and
V.
Lordi
,
AIP Adv.
7
,
025110
(
2017
).
83.
M.
Barei
,
A.
Hochmeister
,
G.
Jegert
,
U.
Zschieschang
,
H.
Klauk
,
R.
Huber
,
D.
Grundler
,
W.
Porod
,
B.
Fabel
,
G.
Scarpa
, and
P.
Lugli
,
J. Appl. Phys.
110
,
044316
(
2011
).
84.
N. V.
Nguyen
,
O.
Kirillov
,
H. D.
Xiong
, and
J. S.
Suehle
,
AIP Conf. Proc.
931
,
308
(
2007
).
85.
K. T.
McCarthy
,
S. B.
Arnason
, and
A. F.
Hebard
,
Appl. Phys. Lett.
74
,
302
(
1999
).
86.
M.
Matys
,
B.
Adamowicz
, and
T.
Hashizume
,
Appl. Phys. Lett.
101
,
231608
(
2012
).
87.
P.
Bidzinski
,
M.
Miczek
,
B.
Adamowicz
,
C.
Mizue
, and
T.
Hashizume
,
Jpn. J. Appl. Phys.
50
,
04DF08
(
2011
).
88.
S.
Khorasani
and
B.
Rashidian
,
J. Opt.
4
,
251
(
2002
).
You do not currently have access to this content.