Lithium niobate is a promising candidate for use in high-temperature piezoelectric devices due to its high Curie temperature (1483 K) and strong piezoelectric properties. However, the piezoelectric behavior has, in practice, been found to degrade at various temperatures as low as 573 K, with no satisfactory explanation available in the literature. We, therefore, studied the electrical conductivity of congruent lithium niobate single crystals in the temperature range of 293–1273 K with an 500 mV excitation at frequencies between 20 Hz and 20 MHz. An analytical model that generalizes the universal dielectric relaxation law with the Arrhenius equation was found to describe the experimental temperature and frequency dependence and helped discriminate between conduction mechanisms. Electronic conduction was found to dominate at low temperatures, leading to low overall electrical conductivity. However, at high temperatures, the overall electrical conductivity increases significantly due to ionic conduction, primarily with lithium ions (Li+) as charge carriers. This increase in electrical conductivity can, therefore, cause an internal short in the lithium niobate crystal, thereby reducing observable piezoelectricity. Interestingly, the temperature above which ionic conductivity dominates depends greatly on the excitation frequency: at a sufficiently high frequency, lithium niobate does not exhibit appreciable ionic conductivity at high temperature, helping explain the conflicting observations reported in the literature. These findings enable an appropriate implementation of lithium niobate to realize previously elusive high-temperature piezoelectric applications.

1.
W. R. C. B.
Jaffe
and
H. L.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
1971
).
2.
K.
Shinekumar
and
S.
Dutta
, “
High-temperature piezoelectrics with large piezoelectric coefficients
,”
J. Electron. Mater.
44
,
613
622
(
2015
).
3.
J. R.
Carruthers
,
G. E.
Peterson
,
M.
Grasso
, and
P. M.
Bridenbaugh
, “
Nonstoichiometry and crystal growth of lithium niobate
,”
J. Appl. Phys.
42
,
1846
1851
(
1971
).
4.
R. S.
Weis
and
T. K.
Gaylord
, “
Lithium niobate: Summary of physical properties and crystal structure
,”
Appl. Phys. A: Solids Surf.
37
,
191
203
(
1985
).
5.
R. T.
Smith
and
F. S.
Welsh
, “
Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate
,”
J. Appl. Phys.
42
,
2219
2230
(
1971
).
6.
R.
Fachberger
,
G.
Bruckner
,
G.
Knoll
,
R.
Hauser
,
J.
Biniasch
, and
L.
Reindl
, “
Applicability of LiNbO3, langasite and GaPO4 in high temperature SAW sensors operating at radio frequencies
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
1427
1431
(
2004
).
7.
A.
Weidenfelder
,
J.
Shi
,
P.
Fielitz
,
G.
Borchardt
,
K.
Becker
, and
H.
Fritze
, “
Electrical and electromechanical properties of stoichiometric lithium niobate at high-temperatures
,”
Solid State Ionics
225
,
26
29
(
2012
).
8.
G.
Ohlendorf
,
D.
Richter
,
J.
Sauerwald
, and
H.
Fritze
, “
High-temperature electrical conductivity and electro- mechanical properties of stoichiometric lithium niobate
,”
Diffus. Fundam.
8
,
1
7
(
2008
); available at https://diffusion.uni-leipzig.de/pdf/volume8/diff_fund_8(2008)6.pdf.
9.
A.
Weidenfelder
,
H.
Fritze
,
P.
Fielitz
,
G.
Borchardt
,
J.
Shi
,
K.-D.
Becker
, and
S.
Ganschow
, “
Transport and electromechanical properties of stoichiometric lithium niobate at high temperatures
,”
Z. Phys. Chem.
226
,
421
429
(
2012
).
10.
A.
Weidenfelder
,
M.
Schulz
,
P.
Fielitz
,
J.
Shi
,
G.
Borchardt
,
K.-D.
Becker
, and
H.
Fritze
, “
Electronic and ionic transport mechanisms of stoichiometric lithium niobate at high-temperatures
,”
MRS Proc.
1519
,
421
(
2013
).
11.
D.
Damjanovic
, “
Materials for high temperature piezoelectric transducers
,”
Curr. Opin. Solid State Mater. Sci.
3
,
469
473
(
1998
).
12.
E.
Born
,
J.
Hornsteiner
,
T.
Metzger
, and
E.
Riha
, “
Diffusion of niobium in congruent lithium niobate
,”
Phys. Status Solidi A
177
,
393
400
(
2000
).
13.
A.
Baba
,
C. T.
Searfass
, and
B. R.
Tittmann
, “
High temperature ultrasonic transducer up to 1000°C using lithium niobate single crystal
,”
Appl. Phys. Lett.
97
,
232901
(
2010
).
14.
J.
Hornsteiner
,
E.
Born
,
G.
Fischerauer
, and
E.
Riha
, “Surface acoustic wave sensors for high-temperature applications,” in Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165) (IEEE, Pasadena, CA, 1998), pp. 615–620.
15.
H.
de Castilla
,
P.
Bélanger
, and
R. J.
Zednik
, “
High temperature characterization of piezoelectric lithium niobate using electrochemical impedance spectroscopy resonance method
,”
J. Appl. Phys.
122
,
244103
(
2017
).
16.
A. S.
Pritulenko
,
A. V.
Yatsenko
, and
S. V.
Yevdokimov
, “
Analysis of the nature of electrical conductivity in nominally undoped LiNbO3 crystals
,”
Crystallogr. Rep.
60
,
267
272
(
2015
).
17.
J.
Shi
,
H.
Fritze
,
G.
Borchardt
, and
K.-D.
Becker
, “
Defect chemistry, redox kinetics, and chemical diffusion of lithium deficient lithium niobate
,”
Phys. Chem. Chem. Phys.
13
,
6925
(
2011
).
18.
B.
Ruprecht
,
J.
Rahn
,
H.
Schmidt
, and
P.
Heitjans
, “
Low-temperature DC conductivity of LiNbO3 single crystals
,”
Z. Phys. Chem.
226
,
431
437
(
2012
).
19.
J.
Rahn
,
E.
Hüger
,
L.
Dörrer
,
B.
Ruprecht
,
P.
Heitjans
, and
H.
Schmidt
, “
Li self-diffusion in lithium niobate single crystals at low temperatures
,”
Phys. Chem. Chem. Phys.
14
,
2427
(
2012
).
20.
A.
El-Bachiri
,
F.
Bennani
, and
M.
Bousselamti
, “
Ionic and polaronic conductivity of lithium niobate
,”
Spectrosc. Lett.
47
,
374
380
(
2014
).
21.
A.
Mehta
,
E. K.
Chang
, and
D. M.
Smyth
, “
Ionic transport in LiNbO3
,”
J. Mater. Res.
6
,
851
854
(
1991
).
22.
M. N.
Palatnikov
,
V. A.
Sandler
,
N. V.
Sidorov
, and
O. V.
Makarova
, “
Investigation of the piezoelectric resonance in stoichiometric LiNbO3 crystals at high temperatures and conductivities
,”
Phys. Solid State
61
,
1218
1222
(
2019
).
23.
O. F.
Schirmer
,
M.
Imlau
,
C.
Merschjann
, and
B.
Schoke
, “
Electron small polarons and bipolarons in LiNbO3
,”
J. Phys.: Condens. Matter
21
,
123201
(
2009
).
24.
P.
Fielitz
,
G.
Borchardt
,
S.
Ganschow
,
R.
Bertram
,
R.
Jackson
,
H.
Fritze
, and
K.-D.
Becker
, “
Tantalum and niobium diffusion in single crystalline lithium niobate
,”
Solid State Ionics
259
,
14
20
(
2014
).
25.
P.
Fielitz
,
O.
Schneider
,
G.
Borchardt
,
A.
Weidenfelder
,
H.
Fritze
,
J.
Shi
,
K.
Becker
,
S.
Ganschow
, and
R.
Bertram
, “
Oxygen-18 tracer diffusion in nearly stoichiometric single crystalline lithium niobate
,”
Solid State Ionics
189
,
1
6
(
2011
).
26.
A.
El Bachiri
,
F.
Bennani
, and
M.
Bousselamti
, “
Dielectric and electrical properties of LiNbO3 ceramics
,”
J. Asian Ceram. Soc.
4
,
46
54
(
2018
).
27.
M.
Masoud
and
P.
Heitjans
, “
Impedance spectroscopy study of Li ion dynamics in single crystal, microcrystalline, nanocrystalline and amorphous LiNbO3
,”
Defect Diffus. Forum
237-240
,
1016
1021
(
2005
).
28.
A. K.
Jonscher
,
Universal Relaxation Law: A Sequel to Dielectric Relaxation in Solids
(
Chelsea Dielectrics Press
,
London
,
1996
).
29.
A. K.
Jonscher
, “
Dielectric relaxation in solids
,”
J. Phys. D: Appl. Phys.
32
,
R57
R70
(
1999
).
30.
Q.
Wang
,
C.
Liu
,
Y.
Gao
,
Y.
Ma
,
Y.
Han
, and
C.
Gao
, “
Mixed conduction and grain boundary effect in lithium niobate under high pressure
,”
Appl. Phys. Lett.
106
,
132902
(
2015
).
31.
D. P.
Birnie
, “
Analysis of diffusion in lithium niobate
,”
J. Mater. Sci.
28
,
302
315
(
1993
).
You do not currently have access to this content.