BaTiO3 is a well-known piezoelectric material, which is widely used in various devices. In general, the ferroelectric state of BaTiO3 is composed of polarized domains. The growth of these domains due to an applied electric field or stress is related to the piezoelectric performance. We investigated the effects of various point defects, monovacancies {VBa, VTi, VO}, and first- and second-neighbor divacancies {VBa–VO, VTi–VO} on polarized domain growth in BaTiO3 under an applied electric field by molecular dynamics simulations using the core–shell inter-atomic potential. We found that (i) the first-neighbor divacancy VBa–VO is the most effective in assisting the domain growth under an applied electric field (i.e., a smaller coercive electric field) in an asymmetrical manner with respect to the electric field direction. This is mainly due to the creation of an electric field around VBa–VO by significant Ti shifts toward VBa with the assistance of VO. (ii) Domain growth proceeds in a 1 + 2 dimensional manner. The domain growth velocity in the direction of the applied electric field is approximately two orders of magnitude higher than that in the perpendicular direction. (iii) Increasing the density of the divacancy VBa–VO further lowers the coercive electric field when the applied electric field is parallel to the divacancy dipoles. The present results will be essential for designing the type, orientation, and density of defects to modify the coercive electric field of BaTiO3 in defect engineering.

1.
M.
Acosta
,
N.
Novak
,
V.
Rojas
,
S.
Patel
,
R.
Vaish
,
J.
Koruza
,
G. A.
Rossetti
, and
J.
Rödel
,
Appl. Phys. Rev.
4
,
041305
(
2017
).
2.
Y.
Feng
,
W.-L.
Li
,
D.
Xu
,
Y.-L.
Qiao
,
Y.
Yu
,
Y.
Zhao
, and
W.-D.
Fei
,
ACS Appl. Mater. Interfaces
8
,
9231
9241
(
2016
).
3.
P. K.
Panda
,
J. Mater. Sci.
44
,
5049
5062
(
2009
).
4.
P.
Kim
,
N. M.
Doss
,
J. P.
Tillotson
,
P. J.
Hotchkiss
,
M.-J.
Pan
,
S. R.
Marder
,
J.
Li
,
J. P.
Calame
, and
J. W.
Perry
,
ACS Nano
3
,
2581
2592
(
2009
).
5.
V.
Boddu
,
F.
Endres
, and
P.
Steinmann
,
Sci. Rep.
7
,
806
(
2017
).
6.
X. Y.
Li
,
Q.
Yang
,
J. X.
Cao
,
L. Z.
Sun
,
Q. X.
Peng
,
Y. C.
Zhou
, and
R. X.
Zhang
,
J. Phys. Chem. C
122
,
3091
3100
(
2018
).
7.
Y.
Feng
,
J.
Wu
,
Q.
Chi
,
W.
Li
,
Y.
Yu
, and
W.
Fei
,
Chem. Rev.
120
,
1710
1787
(
2020
).
8.
C. L.
Freeman
,
J. A.
Dawson
,
H.-R.
Chen
,
L.
Ben
,
J. H.
Harding
,
F. D.
Morrison
,
D. C.
Sinclair
, and
A. R.
West
,
Adv. Funct. Mater.
23
,
3925
3928
(
2013
).
9.
T.
Koyama
and
H.
Onodera
,
Mater. Trans.
50
,
970
976
(
2009
).
11.
A. R.
Damodaran
,
E.
Breckenfeld
,
Z.
Chen
,
S.
Lee
, and
L. W.
Martin
,
Adv. Mater.
26
,
6341
6347
(
2014
).
12.
X.
Zhao
,
W.
Chen
,
L.
Zhang
, and
L.
Zhong
,
J. Alloys Compd.
618
,
707
711
(
2015
).
13.
D.
Lee
,
B. C.
Jeon
,
S. H.
Baek
,
S. M.
Yang
,
Y. J.
Shin
,
T. H.
Kim
,
Y. S.
Kim
,
J.-G.
Yoon
,
C. B.
Eom
, and
T. W.
Noh
,
Adv. Mater.
24
,
6490
6495
(
2012
).
14.
Y.
Zhang
,
J.
Li
, and
D.
Fang
,
Phys. Rev. B
82
,
064103
(
2010
).
15.
A. M.
Massoud
,
R.
Krause-Rehberg
,
H. T.
Langhammer
,
J.
Gebauer
, and
M.
Mohsen
,
Mater. Sci. Forum
363–365
,
144
(
2001
).
16.
B.
Liu
,
Y.
Ma
,
Y.
Zhou
, and
J.
Ding
,
Ferroelectrics
401
,
36
44
(
2010
).
17.
J. N.
Baker
,
P. C.
Bowes
,
J. S.
Harris
, and
D. L.
Irving
,
J. Appl. Phys.
124
,
114101
(
2018
).
18.
P.
Erhart
and
K.
Albe
,
J. Appl. Phys.
102
,
084111
(
2007
).
19.
J.
Wang
,
Y. G.
Shen
,
F.
Song
,
F. J.
Ke
,
Y. L.
Bai
, and
C. S.
Lu
,
Sci. China: Phys., Mech. Astron.
59
,
634602
(
2016
).
20.
Y.
Ma
,
B.
Liu
,
Y.
Zhou
, and
J.
Ding
,
Appl. Phys. Lett.
96
,
122904
(
2010
).
21.
P. J. D.
Lindan
and
M. J.
Gillan
,
J. Phys.: Condens. Matter
5
,
1019
1030
(
1993
).
22.
J. M.
Vielma
and
G.
Schneider
,
J. Appl. Phys.
114
,
174108
(
2013
).
23.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
,
2nd ed.
(
Oxford University Press
,
Oxford
,
2017
).
24.
T. P.
Dougherty
,
G. P.
Wiederrecht
,
K. A.
Nelson
,
M. H.
Garrett
,
H. P.
Jensen
, and
C.
Warde
,
Science
258
,
770
774
(
1992
).
25.
R. E.
Cohen
,
Ferroelectrics
150
,
1
12
(
1993
).
26.
B.
Zalar
,
A.
Lebar
,
J.
Seliger
,
R.
Blinc
,
V. V.
Laguta
, and
M.
Itoh
,
Phys. Rev. B
71
,
064107
(
2005
).
27.
T.
Tsuzuki
,
S.
Ogata
,
R.
Kobayashi
,
M.
Uranagase
,
S.
Shimoi
, and
S.
Tsujimoto
,
Int. J. Circuits Syst. Signal Process.
15
,
1828
1832
(
2021
).
28.
S.
Liu
and
R. E.
Cohen
,
Appl. Phys. Lett.
111
,
082903
(
2017
).
29.
R.
Machado
,
A.
Di Loreto
,
A.
Frattini
,
M.
Sepliarsky
, and
M. G.
Stachiotti
,
J. Alloys Compd.
809
,
151847
(
2019
).
30.
Y.
Inuishi
and
S.
Uematsu
,
J. Phys. Soc. Jpn.
13
,
761
762
(
1958
).
31.
H. L.
Stadler
and
P. J.
Zachmanidis
,
J. Appl. Phys.
35
,
2895
2899
(
1964
).
32.
H. L.
Stadler
,
J. Appl. Phys.
37
,
1947
1948
(
1966
).
33.
Y.-H.
Shin
,
I.
Grinberg
,
I.-W.
Chen
, and
A. M.
Rappe
,
Nature
449
,
881
884
(
2007
).
34.
J. Y.
Jo
,
D. J.
Kim
,
Y. S.
Kim
,
S.-B.
Choe
,
T. K.
Song
,
J.-G.
Yoon
, and
T. W.
Noh
,
Phys. Rev. Lett.
97
,
247602
(
2006
).

Supplementary Material

You do not currently have access to this content.