A method to improve the performance of an ultrasound liquid crystal lens is proposed. A double-layer-based lens model tailored based on the liquid crystal’s physical properties, e.g., its dielectric anisotropy and elastic constants, is presented as an alternative method to improve the lens’s optical performance while forming weak anchoring surfaces for nematic liquid crystals, thus promoting easier reorientation of the liquid crystal molecules. The lens configuration was simulated by finite-element analysis using Ansys software. The lens’s physical and optical characteristics were evaluated via comparison using two different liquid crystal materials: 5CB and RDP-85475. The birefringence distribution within the liquid crystal layer was investigated under ultrasound excitation, and the molecular angles of inclination were estimated. A higher birefringence distribution, greater molecular inclination, and a longer focal length were obtained for the double-layered liquid crystal lens using the 5CB material.

1.
E.
Hecht
,
Optics
, 4th ed. (
Addison-Wesley
,
2002
).
2.
L.
Bergstein
,
J. Opt. Soc. Am.
48
,
154
(
1958
).
3.
S.
Xu
,
Y.-J.
Lin
, and
S.-T.
Wu
,
Opt. Express
17
,
10499
(
2009
).
4.
A.
Mermillod-Blondin
,
E.
McLeod
, and
C. B.
Arnold
,
Opt. Lett.
33
,
2146
(
2008
).
5.
C.
Bricot
,
M.
Hareng
, and
F.
Spitz
, “Optical projection device and an optical reader incorporating this device,” U.S. patent 4,037,929 (26 July 1977).
6.
S.
Sato
,
Jpn. J. Appl. Phys.
18
,
1679
(
1979
).
7.
L.
Guoqiang
, “Adaptive lens,” in Progress in Optics, edited by E. Wolf (Elsevier, 2010), Vol. 55, Chap. 4, pp. 199–283.
8.
L.
Shi
,
L.
Li
,
D.
Bryant
,
D.
Duston
, and
P.
Bos
, in Optics InfoBase Conference Papers (Optical Society of America, 2010).
9.
M.
Ye
,
S.
Hayasaka
, and
S.
Sato
,
Jpn. J. Appl. Phys.
43
,
6108
(
2004
).
10.
M.
Kawamura
,
K.
Nakamura
, and
S.
Sato
,
Opt. Express
21
,
26520
(
2013
).
11.
C.-J.
Hsu
,
J.-J.
Jhang
, and
C.-Y.
Huang
,
Opt. Express
24
,
16722
(
2016
).
12.
J.
Beeckman
,
T. H.
Yang
,
I.
Nys
,
J. P.
George
,
T. H.
Lin
, and
K.
Neyts
,
Opt. Lett.
43
,
271
(
2018
).
13.
S. T.
Wu
and
D. K.
Yang
, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Hoboken, NJ, 2006).
14.
D.
Tarrazó-Serrano
,
S.
Pérez-López
,
P.
Candelas
,
A.
Uris
, and
C.
Rubio
,
Sci. Rep.
9
,
7067
(
2019
).
15.
S.
Kang
,
E.
Dotsenko
,
D.
Amrhein
,
C.
Theriault
, and
C. B.
Arnold
,
Proc. SPIE
10539
,
1053902
(
2018
).
16.
G. H.
Heilmeier
,
L. A.
Zanoni
, and
L. A.
Barton
,
Appl. Phys. Lett.
13
,
46
(
1968
).
17.
W.
Helfrich
,
Phys. Rev. Lett.
29
,
1583
(
1972
).
18.
A. E.
Lord
and
M. M.
Labes
,
Phys. Rev. Lett.
25
,
570
(
1970
).
19.
M.
Witkowska-Borysewicz
and
A.
Śliwiński
,
J. Phys.
44
,
411
(
1983
).
20.
M.
Bertolotti
,
S.
Martellucci
,
F.
Scudieri
, and
D.
Sette
,
Appl. Phys. Lett.
21
,
74
(
1972
).
21.
R.
Morris
, “Hydrodynamics of nematic liquid crystals for diffractive optical elements,” Ph.D. thesis (University of Leeds, 2021).
22.
S.
Taniguchi
,
D.
Koyama
,
Y.
Shimizu
,
A.
Emoto
,
K.
Nakamura
, and
M.
Matsukawa
,
Appl. Phys. Lett.
108
,
101103
(
2016
).
23.
Y.
Shimizu
,
D.
Koyama
,
S.
Taniguchi
,
A.
Emoto
,
K.
Nakamura
, and
M.
Matsukawa
,
Appl. Phys. Lett.
111
,
231101
(
2017
).
24.
Y.
Shimizu
,
D.
Koyama
,
M.
Fukui
,
A.
Emoto
,
K.
Nakamura
, and
M.
Matsukawa
,
Appl. Phys. Lett.
112
,
161104
(
2018
).
25.
J.
Onaka
,
T.
Iwase
,
M.
Fukui
,
D.
Koyama
, and
M.
Matsukawa
,
Opt. Lett.
46
(
5
),
1169
(
2021
).
26.
J.
Onaka
,
T.
Iwase
,
A.
Emoto
,
D.
Koyama
, and
M.
Matsukawa
,
Appl. Opt.
60
,
10365
(
2021
).
27.
T.
Iwase
,
J.
Onaka
,
A.
Emoto
,
D.
Koyama
, and
M.
Matsukawa
,
Jpn. J. Appl. Phys.
61
(SG),
SG1013
(
2022
).
28.
29.
G. R.
Torr
,
Am. J. Phys.
52
,
402
(
1984
).
30.
D.
Koyama
,
R.
Isago
, and
K.
Nakamura
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
2720
(
2011
).
31.
B. T.
Chu
and
R. E.
Apfel
,
J. Acoust. Soc. Am.
72
,
1673
(
1982
).
32.
Z.
dong Zhang
and
W.
Ye
,
Liq. Cryst.
36
,
885
(
2009
).
33.
R. M. S.
Ataalla
,
G.
Barbero
, and
L.
Komitov
,
J. Appl. Phys.
113
,
164501
(
2013
).
34.
M.
Ye
and
S.
Sato
,
Mol. Cryst. Liq. Cryst.
422
,
197
(
2004
).
35.
H.-S.
Chen
,
Y.-J.
Wang
,
C.-M.
Chang
, and
Y.-H.
Lin
, “A polarizer–free liquid crystal lens exploiting an embedded–multilayered structure,”
IEEE Photon. Technol. Lett.
27
(8),
899
–902 (
2015
).
36.
M.
Ye
,
B.
Wang
,
M.
Kawamura
, and
S.
Sato
,
Jpn. J. Appl. Phys.
46
,
6776
(
2007
).
37.
A.
Emoto
,
N.
Otani
, and
T.
Fukuda
, “Birefringence measurement device and birefringence measurement method,” U.S. patent 10,119,904 (6 November 2018).
38.
T.
Sasaki
,
A.
Hatayama
,
A.
Emoto
,
H.
Ono
, and
N.
Kawatsuki
,
J. Appl. Phys.
100
,
063502
(
2006
).
39.
H.
Ono
,
A.
Emoto
,
F.
Takahashi
,
N.
Kawatsuki
, and
T.
Hasegawa
,
J. Appl. Phys.
94
,
1298
(
2003
).
40.
A.
Emoto
,
M.
Nishi
,
M.
Okada
,
S.
Manabe
,
S.
Matsui
,
N.
Kawatsuki
, and
H.
Ono
,
Appl. Opt.
49
(
23
),
4355
(
2010
).
41.
H.
Zhou
,
E. P.
Choate
, and
H.
Wang
,
Liq. Cryst. Polym.
2
,
265
(
2015
).
42.
J.
Onaka
,
T.
Iwase
,
M.
Fukui
,
D.
Koyama
, and
M.
Matsukawa
, “Supplementary document for Ultrasound liquid crystal lens with enlarged aperture using traveling waves - 5071177.pdf,”
Opt. Lett.
(published online 2021).
43.
S.
Nagaï
,
A.
Peters
, and
S.
Candau
,
Rev. Phys. Appl.
12
,
21
(
1977
).
44.
J.
Jones
, “Liquid crystal displays,” in The Handbook of Optoelectronics (CRC Press, 2017), pp. 137–224.
You do not currently have access to this content.