The morphological evolution of the conducting filament (CF) predominantly controls the electric response of the resistive random access memory (ReRAM) devices. However, the parameters—in terms of the material and the processing—which control the growth of such CF are plenty. Extending the phase field technique for ReRAM systems presented by Roy and Cha [J. Appl. Phys. 128, 205102 (2020)], we could successfully model the complete SET (to attain low resistance state) and RESET (to attain high resistance state) processes due to the application of sweeping voltage. The key parameters that influence the stability of the multi-cycle I-V response or the endurance behavior are identified. The computational findings of the presented model ReRAM system are practical in correlating the multi-parametric influence with the stability, variability, and reliability of the endurance cycle that affect the device performance and also lead to the device failure. We believe that our computational approach of connecting the morphological changes of the CF with the electrical response has the potential to further understand and optimize the performance of the ReRAM devices.

1.
F.
Zahoor
,
T. Z.
Azni Zulkifli
, and
F. A.
Khanday
, “
Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications
,”
Nanoscale Res. Lett.
15
,
526
(
2020
).
2.
C.
Chappert
,
A.
Fert
, and
F. N.
Van Dau
, “
The emergence of spin electronics in data storage
,”
Nat. Mater.
6
,
813
(
2007
).
3.
D. B.
Strukov
and
K. K.
Likharev
, “
CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices
,”
Nanotechnology
16
,
888
(
2005
).
4.
Q.
Xia
,
W.
Robinett
,
M. W.
Cumbie
,
N.
Banerjee
,
T. J.
Cardinali
,
J. J.
Yang
,
W.
Wu
,
X.
Li
,
W. M.
Tong
,
D. B.
Strukov
,
G. S.
Snider
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
, “
Memristor-CMOS hybrid integrated circuits for reconfigurable logic
,”
Nano Lett.
9
,
3640
(
2009
).
5.
H.
Tan
,
G.
Liu
,
H.
Yang
,
X.
Yi
,
L.
Pan
,
J.
Shang
,
S.
Long
,
M.
Liu
,
Y.
Wu
, and
R. W.
Li
, “
Light-gated memristor with integrated logic and memory functions
,”
ACS Nano
11
,
11298
(
2017
).
6.
Y.
Yang
,
B.
Chen
, and
W. D.
Lu
, “
Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity
,”
Adv. Mater.
27
,
7720
(
2015
).
7.
G. W.
Burr
,
R. M.
Shelby
,
A.
Sebastian
,
S.
Kim
,
S.
Kim
,
S.
Sidler
,
K.
Virwani
,
M.
Ishii
,
P.
Narayanan
,
A.
Fumarola
,
L. L.
Sanches
,
I.
Boybat
,
M.
Le Gallo
,
K.
Moon
,
J.
Woo
,
H.
Hwang
, and
Y.
Leblebici
, “
Neuromorphic computing using non-volatile memory
,”
Adv. Phys. X
2
,
89
(
2017
).
8.
Y.
Van De Burgt
,
E.
Lubberman
,
E. J.
Fuller
,
S. T.
Keene
,
G. C.
Faria
,
S.
Agarwal
,
M. J.
Marinella
,
A.
Alec Talin
, and
A.
Salleo
, “
A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
,”
Nat. Mater.
16
,
414
(
2017
).
9.
T.
Guo
,
B.
Sun
,
S.
Ranjan
,
Y.
Jiao
,
L.
Wei
,
Y.
Norman Zhou
, and
Y. A.
Wu
, “
From memristive materials to neural networks
,”
ACS Appl. Mater. Interfaces
12
,
54243
(
2020
).
10.
G. E.
Moore
, “
Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, April 19, 1965, pp.114 ff.
,”
IEEE Solid State Circ. Soc. Newsl.
11
,
33
(
2006
).
11.
A.
Roy
,
H. W.
Jang
, and
P.-R.
Cha
, “
Effects of mobile charged defects on current–voltage behavior in resistive switching memories based on organic–inorganic hybrid perovskite
,”
Appl. Phys. Lett.
113
,
193301
(
2018
).
12.
A.
Roy
and
P.-R.
Cha
, “
Electric field induced charge migration and formation of conducting filament during resistive switching in electrochemical metallization (ECM) memory cells
,”
J. Appl. Phys.
128
,
205102
(
2020
).
13.
S.
Menzel
and
R.
Waser
, “
Analytical analysis of the generic SET and RESET characteristics of electrochemical metallization memory cells
,”
Nanoscale
5
,
11003
(
2013
).
14.
S.
Menzel
,
U.
Böttger
, and
R.
Waser
, “
Simulation of multilevel switching in electrochemical metallization memory cells
,”
J. Appl. Phys.
111
,
014501
(
2012
).
15.
S.
Menzel
,
S.
Tappertzhofen
,
R.
Waser
, and
I.
Valov
, “
Switching kinetics of electrochemical metallization memory cells
,”
Phys. Chem. Chem. Phys.
15
,
6945
(
2013
).
16.
F.
Pan
and
V.
Subramanian
, “A kinetic Monte Carlo study on the dynamic switching properties of electrochemical metallization RRAMs during the SET process,” in
2010 International Conference on Simulation of Semiconductor Processes and Devices
(IEEE, 2010), pp. 19–22.
17.
F.
Pan
,
S.
Yin
, and
V.
Subramanian
, “A comprehensive simulation study on metal conducting filament formation in resistive switching memories,” in 2011 3rd IEEE International Memory Workshop (IMW) (IEEE, 2011), pp. 1–4.
18.
S.
Menzel
,
P.
Kaupmann
, and
R.
Waser
, “
Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations
,”
Nanoscale
7
,
12673
(
2015
).
19.
S.
Dirkmann
and
T.
Mussenbrock
, “
Resistive switching in memristive electrochemical metallization devices
,”
AIP Adv.
7
,
065006
(
2017
).
20.
S.
Dirkmann
,
M.
Ziegler
,
M.
Hansen
,
H.
Kohlstedt
,
J.
Trieschmann
, and
T.
Mussenbrock
, “
Kinetic simulation of filament growth dynamics in memristive electrochemical metallization devices
,”
J. Appl. Phys.
118
,
214501
(
2015
).
21.
Y.
Li
,
M.
Zhang
,
S.
Long
,
J.
Teng
,
Q.
Liu
,
H.
Lv
,
E.
Miranda
,
J.
Suñé
, and
M.
Liu
, “
Investigation on the conductive filament growth dynamics in resistive switching memory via a universal Monte Carlo simulator
,”
Sci. Rep.
7
,
11204
(
2017
).
22.
B. K.
You
,
J. M.
Kim
,
D. J.
Joe
,
K.
Yang
,
Y.
Shin
,
Y. S.
Jung
, and
K. J.
Lee
, “
Reliable memristive switching memory devices enabled by densely packed silver nanocone arrays as electric-field concentrators
,”
ACS Nano
10
,
9478
(
2016
).
23.
Y.
Kim
,
H.
Choi
,
H. S.
Park
,
M. S.
Kang
,
K.-Y.
Shin
,
S.-S.
Lee
, and
J. H.
Park
, “
Reliable multistate data storage with low power consumption by selective oxidation of pyramid-structured resistive memory
,”
ACS Appl. Mater. Interfaces
9
,
38643
(
2017
).
24.
H. H.
Choi
,
S. H.
Paik
,
Y.
Kim
,
M.
Kim
,
Y. S.
Kang
,
S. S.
Lee
,
J. Y.
Jho
, and
J. H.
Park
, “
Facilitation of the thermochemical mechanism in NiO-based resistive switching memories via tip-enhanced electric fields
,”
J. Ind. Eng. Chem.
94
,
233
(
2021
).
25.
S.
Kim
,
W.
Kim
, and
T.
Suzuki
, “
Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness for isothermal solidification in binary alloys
,”
Phys. Rev. E
58
,
3316
(
1998
).
26.
S. G.
Kim
,
W. T.
Kim
, and
T.
Suzuki
, “
Phase-field model for binary alloys
,”
Phys. Rev. E
60
,
7186
(
1999
).
27.
Y.
Shibuta
,
Y.
Okajima
, and
T.
Suzuki
, “
A phase-field simulation of bridge formation process in a nanometer-scale switch
,”
Scr. Mater.
55
,
1095
(
2006
).
28.
Y.
Shibuta
,
Y.
Okajima
, and
T.
Suzuki
, “
Phase-field modeling for electrodeposition process
,”
Sci. Technol. Adv. Mater.
8
,
511
(
2007
).
29.
Q. C.
Sherman
and
P. W.
Voorhees
, “
Phase-field model of oxidation: Equilibrium
,”
Phys. Rev. E
95
,
25
(
2017
).
30.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice-Hall, Inc.
,
USA
,
1999
).
31.
S. L.
Wang
,
R. F.
Sekerka
,
A. A.
Wheeler
,
B. T.
Murray
,
S. R.
Coriell
,
R. J.
Braun
, and
G. B.
McFadden
, “
Thermodynamically-consistent phase-field models for solidification
,”
Physica D
69
,
189
(
1993
).
32.
Y.
Yang
,
P.
Gao
,
L.
Li
,
X.
Pan
,
S.
Tappertzhofen
,
S.
Choi
,
R.
Waser
,
I.
Valov
, and
W. D.
Lu
, “
Electrochemical dynamics of nanoscale metallic inclusions in dielectrics
,”
Nat. Commun.
5
,
4232
(
2014
).
33.
K. Y.
Shin
,
Y.
Kim
,
F. V.
Antolinez
,
J. S.
Ha
,
S. S.
Lee
, and
J. H.
Park
, “
Controllable formation of nanofilaments in resistive memories via tip-enhanced electric fields
,”
Adv. Electron. Mater.
2
,
1
(
2016
).
34.
Y.
Sun
,
C.
Song
,
J.
Yin
,
X.
Chen
,
Q.
Wan
,
F.
Zeng
, and
F.
Pan
, “
Guiding the growth of a conductive filament by nanoindentation to improve resistive switching
,”
ACS Appl. Mater. Interfaces
9
,
34064
(
2017
).
35.
B.
Cheng
,
A.
Emboras
,
Y.
Salamin
,
F.
Ducry
,
P.
Ma
,
Y.
Fedoryshyn
,
S.
Andermatt
,
M.
Luisier
, and
J.
Leuthold
, “
Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching
,”
Commun. Phys.
2
,
28
(
2019
).
36.
E.
Kreyszig
,
Advanced Engineering Mathematics
, 9th ed. (
John Wiley & Sons, Inc.
,
USA
,
2006
).
37.
D.
Duncan
,
B.
Magyari-Köpe
, and
Y.
Nishi
, “
Filament-induced anisotropic oxygen vacancy diffusion and charge trapping effects in hafnium oxide RRAM
,”
IEEE Electron Device Lett.
37
,
400
(
2016
).
38.
A.
Roy
and
M. P.
Gururajan
, “
Phase field modelling of morphologies driven by tetragonal interfacial energy anisotropy
,”
Cryst. Growth Des.
21
,
1591
(
2021
).
39.
W.
Wang
,
M.
Wang
,
E.
Ambrosi
,
A.
Bricalli
,
M.
Laudato
,
Z.
Sun
,
X.
Chen
, and
D.
Ielmini
, “
Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices
,”
Nat. Commun.
10
,
81
(
2019
).
40.
B. G.
Chae
,
J. B.
Seol
,
J. H.
Song
,
K.
Baek
,
S. H.
Oh
,
H.
Hwang
, and
C. G.
Park
, “
Nanometer-scale phase transformation determines threshold and memory switching mechanism
,”
Adv. Mater.
29
,
1701752
(
2017
).
41.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
, 1st ed. (
Princeton University Press
,
USA
,
1996
).
42.
C.
Schindler
,
G.
Staikov
, and
R.
Waser
, “
Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories
,”
Appl. Phys. Lett.
94
,
072109
(
2009
).
43.
H.
Tian
,
L.
Zhao
,
X.
Wang
,
Y. W.
Yeh
,
N.
Yao
,
B. P.
Rand
, and
T. L.
Ren
, “
Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing
,”
ACS Nano
11
,
12247
(
2017
).
44.
E. J.
Yoo
,
M.
Lyu
,
J.-H.
Yun
,
C. J.
Kang
,
Y. J.
Choi
, and
L.
Wang
, “
Resistive switching behavior in organic–inorganic hybrid CH3NH3PbI3xClx perovskite for resistive random access memory devices
,”
Adv. Mater.
27
,
6170
(
2015
).
45.
A.
Bricalli
,
E.
Ambrosi
,
M.
Laudato
,
M.
Maestro
,
R.
Rodriguez
, and
D.
Ielmini
, “
Resistive switching device technology based on silicon oxide for improved on-off ratio. Part I: Memory devices
,”
IEEE Trans. Electron Devices
65
,
115
(
2018
).
46.
A.
Bricalli
,
E.
Ambrosi
,
M.
Laudato
,
M.
Maestro
,
R.
Rodriguez
, and
D.
Ielmini
, “
Resistive switching device technology based on silicon oxide for improved ON-OFF ratio. Part II: Select devices
, ”
IEEE Trans. Electron Devices
65
,
122
(
2018
).
47.
W.
Lee
,
J.
Park
,
S.
Kim
,
J.
Woo
,
J.
Shin
,
D.
Lee
,
E.
Cha
, and
H.
Hwang
, “
Improved switching uniformity in resistive random access memory containing metal-doped electrolyte due to thermally agglomerated metallic filaments
,”
Appl. Phys. Lett.
100
,
142106
(
2012
).
48.
E.
Ambrosi
,
A.
Bricalli
,
M.
Laudato
, and
D.
Ielmini
, “
Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices
,”
Faraday Discuss.
213
,
87
(
2019
).
49.
C.
Nail
,
G.
Molas
,
P.
Blaise
,
G.
Piccolboni
,
B.
Sklenard
,
C.
Cagli
,
M.
Bernard
,
A.
Roule
,
M.
Azzaz
,
E.
Vianello
,
C.
Carabasse
,
R.
Berthier
,
D.
Cooper
,
C.
Pelissier
,
T.
Magis
,
G.
Ghibaudo
,
C.
Vallée
,
D.
Bedeau
,
O.
Mosendz
,
B.
De Salvo
, and
L.
Perniola
, “Understanding rram endurance, retention and window margin trade-off using experimental results and simulations,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), pp. 4.5.1–4.5.4.
50.
H.
Lv
,
X.
Xu
,
H.
Liu
,
R.
Liu
,
Q.
Liu
,
W.
Banerjee
,
H.
Sun
,
S.
Long
,
L.
Li
, and
M.
Liu
, “
Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory
,”
Sci. Rep.
5
,
7764
(
2015
).
51.
Z.
Wang
,
S.
Ambrogio
,
S.
Balatti
,
S.
Sills
,
A.
Calderoni
,
N.
Ramaswamy
, and
D.
Ielmini
, “
Postcycling degradation in metal-oxide bipolar resistive switching memory
,”
IEEE Trans. Electron Devices
63
,
4279
(
2016
).
52.
T.
Gong
,
Q.
Luo
,
H.
Lv
,
X.
Xu
,
J.
Yu
,
P.
Yuan
,
D.
Dong
,
C.
Chen
,
J.
Yin
,
L.
Tai
,
X.
Zhu
,
S.
Long
,
Q.
Liu
, and
M.
Liu
, “Switching and failure mechanism of self-selective cell in 3D VRRAM by RTN-based defect tracking technique,” in
2018 IEEE 10th International Memory Workshop, IMW 2018
(IEEE, 2018), 1.
53.
M.
Dutta
,
A.
Senapati
,
S.
Ginnaram
, and
S.
Maikap
, “
Resistive switching memory and artificial synapse by using Ti/MoS2 based conductive bridging cross-points
,”
Vacuum
176
,
109326
(
2020
).
54.
K.
Bejtka
,
G.
Milano
,
C.
Ricciardi
,
C. F.
Pirri
, and
S.
Porro
, “
TEM nanostructural investigation of ag-conductive filaments in polycrystalline ZnO-based resistive switching devices
,”
ACS Appl. Mater. Interfaces
12
,
29451
(
2020
).

Supplementary Material

You do not currently have access to this content.