The mechanisms underlying the growth and rupture of aneurysms are poorly understood. Although the wall shear stress (WSS) in elastic aneurysm models is examined using fluid-structure interaction (FSI) simulations, it has not been sufficiently validated using experimental modalities, such as particle image velocimetry (PIV) or phase contrast magnetic resonance imaging (PC-MRI). In this study, we investigated pulsatile flow in an elastic, image-based, patient-specific cerebral aneurysm model using PIV. The phantom model was carefully fabricated using a specialized technique by silicone elastomer. We explored the hemodynamics of the WSS and the kinetic energy cascade (KEC) in the elastic model compared with a rigid model, at the apex of the bifurcation of the middle cerebral artery (MCA) in vitro. The effects of elasticity on the WSS, WSS gradient (WSSG), and tensile strength of the aneurysm wall were also investigated, in addition to the effect of wall elasticity on the KEC compared to a rigid wall. Although the WSSG around the stagnation point had a large positive value, there was no difference between the two models. In particular, wall elasticity suppressed the WSS magnitude around the stagnation point and attenuated the KEC (i.e., the flow fluctuation). Future studies examining KEC frequency and WSS characteristics in a phantom model should consider assessing elasticity.

1.
M.
Shojima
,
M.
Oshima
,
K.
Takai
,
R.
Torii
,
K.
Nagata
,
I.
Shirouzu
,
A.
Morita
, and
T.
Kirino
, “
Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysm
,”
Stroke
36
,
1933
1938
(
2005
).
2.
R.
Torii
,
M.
Oshima
,
T.
Kobayashi
,
K.
Takagi
, and
T. E.
Tezduyar
, “
Influence of wall elasticity in patient-specific hemodynamic simulations
,”
Comput. Fluids
36
,
160
168
(
2007
).
3.
S.
Ahmed
,
I. D.
Sutalo
,
H.
Kavnoudias
, and
A.
Madan
, “
Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: Effect of hypertension and modulus of elasticity
,” in
Proceedings of the 16th Australasian Fluid Mechanics Conference
(University of Queensland, Brisbane, Australia,
2007
), pp.
75
81
.
4.
V. L.
Rayz
,
L.
Boussel
,
G.
Acevedo-Bolton
,
M. T.
Martin
,
R.
Young
,
R.
Lawton
,
R.
Higashida
, and
D.
Saloner
, “
Numerical simulations of flow in cerebral aneurysms: Comparison of CFD results and in vivo MRI measurements
,”
J. Biomech. Eng.
130
,
051011
(
2008
).
5.
K. M.
Saqr
,
S.
Rashad
,
S.
Tupin
,
K.
Niizuma
,
T.
Hassan
,
T.
Tominaga
, and
M.
Ohta
, “
What does computational fluid dynamics tell US about intracranial aneurysms? A meta-analysis and critical review
,”
J. Cereb. Blood Flow Metab.
40
,
1021
1039
(
2020
).
6.
H.
Meng
,
Z.
Wang
,
Y.
Hoi
,
L.
Gao
,
E.
Metaxa
,
D. D.
Swartz
, and
J.
Kolega
, “
Complex hemodynamics at the apex of arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation
,”
Stroke
38
,
1924
1931
(
2007
).
7.
D. H. M.
Sujan
,
M.
Tremmel
,
J.
Mocco
,
M.
Kim
,
J.
Yamamoto
,
A. H.
Siddiqui
,
L. N.
Hopkins
, and
H.
Meng
, “
Morphology parameters for cerebral aneurysm rupture risk assessment
,”
Neurosurgery
63
(
2
),
185
197
(
2008
).
8.
J.
Xiang
,
S. K.
Natarajan
,
M.
Tremmel
,
D.
Ma
,
J.
Mocco
,
L. N.
Hopkins
,
A. H.
Shiddiqui
,
E. I.
Levy
, and
H.
Meng
, “
Hemodynamic- morphologic discriminants for intracranial aneurysm rupture
,”
Stroke
42
,
144
152
(
2011
).
9.
J. M.
Dolan
,
J.
Kolega
, and
H.
Meng
, “
High wall shear stress and spatial gradients in vascular pathology: A review
,”
Ann. Biomed. Eng.
41
,
1411
1427
(
2013
).
10.
G.
Acevedo-Bolton
,
L. D.
Jou
,
B. P.
Dispensa
,
M. T.
Lawton
,
R. T.
Higashida
,
A. J.
Martin
, and
D.
Saloner
, “
Estimating the hemodynamic impact of interventional treatments of aneurysms: Numerical simulation with experimental validation: Technical case report
,”
Neurosurgery
59
,
E429
E430
(
2006
).
11.
M. D.
Ford
,
H. N.
Nikolov
,
S. P.
Lownie
,
E. M.
DeMont
,
W.
Kalata
,
F.
Loth
,
D. W.
Holdsworth
, and
D. A.
Steinman
, “
PIV-measured vs CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models
,”
J. Biomech. Eng.
130
,
021015
(
2008
).
12.
D. M.
Sforza
,
C. M.
Putman
,
S.
Tateshima
,
F.
Vinũela
, and
J. R.
Cebral
, “
Effects of perianeurysmal environment during the growth of cerebral aneurysm: A case study
,”
Am. J. Neuroradiol.
33
,
1115
1120
(
2012
).
13.
Y.
Hoi
,
S. H.
Woodward
,
M.
Kim
,
D. B.
Taulbee
, and
H.
Meng
, “
Validation of CFD simulations of cerebral aneurysms with implication of geometric variation
,”
J. Biomech. Eng.
128
,
844
851
(
2006
).
14.
S.
Tada
and
J. M.
Tarbell
, “
A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress
,”
Ann. Biomed. Eng.
33
,
1202
1212
(
2005
).
15.
R.
Torii
,
M.
Oshima
,
T.
Kobayashi
,
K.
Takagi
, and
T. E.
Tezduyar
, “
Influence of wall thickness on fluid-structure interaction computations of cerebral aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
26
,
336
347
(
2010
).
16.
Y.
Bazilevs
,
M. C.
Hsu
,
Y.
Zhang
,
W.
Wang
,
X.
Liang
,
T.
Kvamsdal
,
R.
Brekken
, and
J. G.
Isaksen
, “
A fully-coupled fluid-structure interaction simulation of cerebral aneurysms
,”
Comput. Mech.
46
,
3
16
(
2010
).
17.
C. J.
Lee
,
Y.
Zhang
,
H.
Takao
,
Y.
Murayama
, and
Y.
Qian
, “
A fluid-structure interaction study using patient-specific ruptured and unruptured aneurysm: The effect of aneurysm morphology, hypertension and elasticity
,”
J. Biomech.
46
,
2402
2410
(
2013
).
18.
A. K.
Alexander
,
A. A.
Cherevko
,
A. P.
Chupakhin
,
M. S.
Bobkova
,
A. L.
Krivoshapkin
, and
Y. K.
Orlov
, “
Haemodynamics of giant cerebral aneurysm: A comparison between the rigid-wall, one-way and two-way FSI models
,”
J. Phys.
22
,
012042
(
2016
).
19.
S. G.
Yazdi
,
P. H.
Geoghegan
,
P. D.
Docherty
,
M.
Jermy
, and
A.
Khanafer
, “
A review of arterial phantom fabrication methods for flow: Measurement using PIV techniques
,”
Ann. Biomed. Eng.
46
,
1697
1721
(
2018
).
20.
T.
Yagi
,
A.
Sato
,
M.
Shinke
,
S.
Takahashi
,
Y.
Tobe
,
H.
Takao
,
Y.
Murayama
, and
M.
Umezu
, “
Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: Transition from a laminar regime
,”
J. R. Soc. Interface
10
,
20121031
(
2013
).
21.
K.
Hayashi
,
H.
Handa
,
S.
Nagasawa
,
A.
Okumura
, and
K.
Moritake
, “
Stiffness and elastic behavior of human intracranial and extracranial arteries
,”
J. Biomech.
13
,
175
184
(
1980
).
22.
L.
Xu
,
M.
Sugawara
,
G.
Tanaka
,
M.
Ohta
,
H.
Liu
, and
R.
Yamaguchi
, “
Effect of elasticity on wall shear stress inside cerebral aneurysm at anterior cerebral artery
,”
Technol. Health Care
24
,
349
357
(
2016
).
23.
R.
Yamaguchi
,
T.
Kotani
,
G.
Tanaka
,
S.
Tupin
,
K.
Osman
,
N. S.
Shafii
,
A. Z. M.
Khudzari
,
K.
Watanabe
,
H.
Anzai
,
A.
Saito
, and
M.
Ohta
, “
Effects of elasticity on wall shear stress in patient-specific aneurysm of cerebral artery
,”
J. Flow Control, Meas., Visual.
7
,
73
86
(
2019
).
24.
J. R.
Cebral
,
X.
Duan
,
B. J.
Chung
,
C.
Putman
,
K.
Aziz
, and
A.
Robertson
, “
Wall mechanical properties and hemodynamics of unruptured intracranial aneurysms
,”
Am. J. Neuroradiol.
36
,
1695
1703
(
2015
).
25.
H.
Kosukegawa
,
S.
Shida
,
Y.
Hashida
, and
M.
Ohta
, “Mechanical properties of tube-shape polyvinyl alcohol hydrogel blood vessel biomodel,” FEDSM-IVNMM2010-30892, 1877-1883; available at https://www.google.com/search?q=Kosukegawa+H%2C+Mechanical+properties+of+tube-shape+polyvinyl+alcohol+hydrogel+blood+vessel+biomodel.
26.
L.
Zarrinkoob
,
K.
Ambarki
,
A.
Wåhlin
,
R.
Birgander
,
A.
Eklund
, and
J.
Malm
, “
Blood flow distribution in cerebral arteries
,”
J. Cereb. Blood Flow Metab.
35
,
648
654
(
2015
).
27.
K.
Valen-Sendstad
,
K. A.
Mardal
,
M.
Mortensen
,
B. A. P.
Reif
, and
H. P.
Langtangen
, “
Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm
,”
J. Biomech.
44
,
2826
2832
(
2011
).
28.
K.
Valen-Sendstad
,
K. A.
Mardal
, and
D. A.
Steinman
, “
High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysm
,”
J. Biomech.
46
,
402
407
(
2013
).
29.
H.
Asgharzadeh
and
I.
Borazjani
, “
Effects of reynolds and womersley numbers on the hemodynamics of intracranial aneurysms
,”
Comput. Math. Methods Med.
4
,
1
16
(
2016
).
30.
K. M.
Saqr
,
S.
Tupin
,
S.
Rashad
,
T.
Endo
,
K.
Niizuma
,
T.
Tominaga
, and
M.
Ohta
, “
Physiologic blood flow is turbulent
,”
Sci. Rep.
10
,
1
12
(
2020
).
31.
Y.
Umeda
,
F.
Ishida
,
K.
Hamada
,
K.
Fukazawa
,
Y.
Miura
,
N.
Toma
,
H.
Suzuki
,
S.
Matsushima
,
S.
Shimosaka
, and
W.
Tai
, “
Novel dynamic four-dimensional CT angiography revealing 2-type motions of cerebral arteries
,”
Stroke
42
,
815
818
(
2011
).
32.
J. R.
Cebral
,
F.
Mut
,
D.
Sforza
,
R.
Löhner
,
E.
Scrivano
,
P.
Lylyk
, and
C.
Putman
, “
Clinical application of image-based CFD for cerebral aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
27
,
977
992
(
2011
).
33.
G. G.
Fergusson
, “
Turbulence in human intracranial saccular aneurysms
,”
J. Neurosurg.
33
,
485
497
(
1970
).
34.
D. A.
Bruneau
,
M.
Najafi
,
T.
Natarajan
,
K.
Valen-Sendstad
, and
D. A.
Steinman
, “Impact of flow rate on the high frequency flow instabilities in intracranial aneurysms, with implications for wall vibration,” SB3C2021, No.444; available at https://www.simulamet.no/publications/impact-flow-rate-high-frequency-flow-instabilities-intracranial-aneurysms-implications.
35.
R.
Yamaguchi
,
G.
Tanaka
, and
H.
Liu
, “
Effect of elasticity on flow characteristics inside intracranial aneurysms
,”
Int. J. Neurol. Neurother.
3
,
049
(
2016
).
36.
A.
Arzani
and
S. C.
Shadden
, “
Wall shear stress fixed points in cardiovascular fluid mechanics
,”
J. Biomech.
73
,
145
152
(
2018
).
37.
V.
Mazzi
,
D.
Gallo
,
K.
Calò
,
M.
Najafi
,
M. O.
Khan
,
G.
De Nisco
,
D. A.
Steinman
, and
U.
Morbiducci
, “
A eulerian method to analyze wall shear stress fixed points and manifolds in cardiovascular flows
,”
Biomech. Model. Mechanobiol.
19
,
1403
1423
(
2020
).
You do not currently have access to this content.