Rapid design and development of the emergent ultrawide-bandgap semiconductors Ga2O3 and Al2O3 require a compact model of their electronic structures, accurate over the broad energy range accessed in future high-field, high-frequency, and high-temperature electronics and visible and ultraviolet photonics. A minimal tight-binding model is developed to reproduce the first-principles electronic structures of the β- and α-phases of Ga2O3 and Al2O3 throughout their reciprocal spaces. Application of this model to α-Ga2O3/α-Al2O3 superlattices reveals that intersubband transitions can be engineered to the 1.55μm telecommunications wavelength, opening new directions in oxide photonics. Furthermore, by accurately reproducing the bandgap, orbital character, effective mass, and high-energy features of the conduction band, this compact model will assist in the investigation and design of the electrical and optical properties of bulk materials, devices, and quantum confined heterostructures.

1.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates
,”
Appl. Phys. Lett.
100
,
013504
(
2012
).
2.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys.
55
,
1202A2
(
2016
).
3.
D.
Gogova
,
G.
Wagner
,
M.
Baldini
,
M.
Schmidbauer
,
K.
Irmscher
,
R.
Schewski
,
Z.
Galazka
,
M.
Albrecht
, and
R.
Fornari
, “
Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE
,”
J. Cryst. Growth
401
,
665
669
(
2014
).
4.
H.
Okumura
,
M.
Kita
,
K.
Sasaki
,
A.
Kuramata
,
M.
Higashiwaki
, and
J. S.
Speck
, “
Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Express
7
,
095501
(
2014
).
5.
R.
Jinno
,
C. S.
Chang
,
T.
Onuma
,
Y.
Cho
,
S. T.
Ho
,
D.
Rowe
,
M. C.
Cao
,
K.
Lee
,
V.
Protasenko
,
D. G.
Schlom
,
D. A.
Muller
,
H. G.
Xing
, and
D.
Jena
, “
Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)2O3 on m-plane sapphire
,”
Sci. Adv.
7
,
eabd5891
(
2021
).
6.
S.
Roy
,
A.
Bhattacharyya
,
P.
Ranga
,
H.
Splawn
,
J.
Leach
, and
S.
Krishnamoorthy
, “
High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga’s figure of merit over 1 GW/cm2
,”
IEEE Electron Device Lett.
42
,
1140
1143
(
2021
).
7.
N. K.
Kalarickal
,
Z.
Xia
,
H.-l.
Huang
,
W.
Moore
,
Y.
Liu
,
M.
Brenner
,
J.
Hwang
, and
S.
Rajan
, “
β-(Al0.18Ga0.82)2O3/Ga2O3 double heterojunction transistor with average field of 5.5 MV/cm
,”
IEEE Electron Device Lett.
42
,
899
902
(
2021
).
8.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
,
011301
(
2018
).
9.
M.
Meneghini
,
G.
Meneghesso
, and
E.
Zanoni
,
Power GaN Devices: Materials, Applications and Reliability
(
Springer International Publishing
,
2017
).
10.
W. A.
Harrison
,
Electronic Structure and the Properties of Solids—The Physics of the Chemical Bond
(
Dover Publications
,
1989
).
11.
S.
Datta
,
Quantum Transport: Atom to Transistor
(
Cambridge University Press
,
2005
).
12.
R.
Lake
,
G.
Klimeck
,
R. C.
Bowen
, and
D.
Jovanovic
, “
Single and multiband modeling of quantum electron transport through layered semiconductor devices
,”
J. Appl. Phys.
81
,
7845
7869
(
1997
).
13.
K.
Nehari
,
N.
Cavassilas
,
J. L.
Autran
,
M.
Bescond
,
D.
Munteanu
, and
M.
Lannoo
, “Influence of band-structure on electron ballistic transport in silicon nanowire MOSFET’s: An atomistic study,” in Proceedings of ESSDERC 2005: 35th European Solid-State Device Research Conference (IEEE, 2005), Vol. 2005, pp. 229–232; available at http://ieeexplore.ieee.org/document/1546627/.
14.
V. N.
Popov
, “
Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model
,”
New J. Phys.
6
,
17
(
2004
).
15.
F.
Sols
,
M.
MacUcci
,
U.
Ravaioli
, and
K.
Hess
, “
Theory for a quantum modulated transistor
,”
J. Appl. Phys.
66
,
3892
3906
(
1989
).
16.
M.
Graf
and
P.
Vogl
, “
Electromagnetic fields and dielectric response in empirical tight-binding theory
,”
Phys. Rev. B
51
,
4940
4949
(
1995
).
17.
X.
Pi
and
C.
Delerue
, “
Tight-binding calculations of the optical response of optimally p-doped Si nanocrystals: A model for localized surface plasmon resonance
,”
Phys. Rev. Lett.
111
,
177402
(
2013
).
18.
C.
Jirauschek
and
T.
Kubis
, “
Modeling techniques for quantum cascade lasers
,”
Appl. Phys. Rev.
1
,
011307
(
2014
).
19.
J.
Lee
,
S.
Ganguli
,
A. K.
Roy
, and
S. C.
Badescu
, “
Density functional tight binding study of β-Ga2O3: Electronic structure, surface energy, and native point defects
,”
J. Chem. Phys.
150
,
174706
(
2019
).
20.
I.
Souza
,
N.
Marzari
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions for entangled energy bands
,”
Phys. Rev. B
65
,
035109
(
2002
).
21.
D.
Gresch
,
Q.
Wu
,
G. W.
Winkler
,
R.
Häuselmann
,
M.
Troyer
, and
A. A.
Soluyanov
, “
Automated construction of symmetrized Wannier-like tight-binding models from ab initio calculations
,”
Phys. Rev. Mater.
2
,
103805
(
2018
).
22.
I.
Souza
,
N.
Marzari
,
D.
Vanderbilt
,
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
S.
Yamakoshi
,
J.
Jung
,
A. H.
Macdonald
,
H.
Peelaers
,
C. G.
Van de Walle
,
D.
Gresch
,
Q.
Wu
,
G. W.
Winkler
,
R.
Häuselmann
,
M.
Troyer
,
A. A.
Soluyanov
,
C.
Franchini
,
R.
Kováčik
,
M.
Marsman
,
S.
Sathyanarayana Murthy
,
J.
He
,
C.
Ederer
,
G.
Kresse
,
S.
Fang
,
R.
Kuate Defo
,
S. N.
Shirodkar
,
S.
Lieu
,
G. A.
Tritsaris
,
E.
Kaxiras
,
S.
Carr
,
S.
Fang
,
H. C.
Po
,
A.
Vishwanath
, and
E.
Kaxiras
, “
Ab initio tight-binding Hamiltonian for transition metal dichalcogenides
,”
Phys. Rev. B
92
,
1
15
(
2012
).
23.
D.
Papaconstantopoulos
and
M.
Mehl
, “
The Slater–Koster tight-binding method: A computationally efficient and accurate approach
,”
J. Phys.: Condens. Matter
15
,
R413
R440
(
2003
).
24.
M.
Nakhaee
,
S. A.
Ketabi
, and
F. M.
Peeters
, “
Tight-binding studio: A technical software package to find the parameters of tight-binding Hamiltonian
,”
Comput. Phys. Commun.
254
,
107379
(
2020
).
25.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
27.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
28.
V.
Zade
,
B.
Mallesham
,
S.
Shantha-Kumar
,
A.
Bronson
, and
C. V.
Ramana
, “
Interplay between solubility limit, structure, and optical properties of tungsten-doped Ga2O3 compounds synthesized by a two-step calcination process
,”
Inorg. Chem.
58
,
3707
3716
(
2019
).
29.
M.
Marezio
and
J. P.
Remeika
, “
Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2xFexO3
,”
J. Chem. Phys.
46
,
1862
1865
(
1967
).
30.
N.
Ishizawa
,
T.
Miyata
,
I.
Minato
,
F.
Marumo
, and
S.
Iwai
, “
A structural investigation of α-Al2O3 at 2170 K
,”
Acta Cryst.
36
,
228
230
(
1980
).
31.
H.
Peelaers
and
C. G.
Van de Walle
, “
Brillouin zone and band structure of β-Ga2O3
,”
Phys. Status Solidi B
252
,
828
832
(
2015
).
32.
Y.
Zhang
,
A.
Neal
,
Z.
Xia
,
C.
Joishi
,
J. M.
Johnson
,
Y.
Zheng
,
S.
Bajaj
,
M.
Brenner
,
D.
Dorsey
,
K.
Chabak
,
G.
Jessen
,
J.
Hwang
,
S.
Mou
,
J. P.
Heremans
, and
S.
Rajan
, “
Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1x)2O3/Ga2O3 heterostructures
,”
Appl. Phys. Lett.
112
,
173502
(
2018
).
33.
M.
Mohamed
,
C.
Janowitz
,
I.
Unger
,
R.
Manzke
,
Z.
Galazka
,
R.
Uecker
,
R.
Fornari
,
J. R.
Weber
,
J. B.
Varley
, and
C. G.
Van de Walle
, “
The electronic structure of β-Ga2O3
,”
Appl. Phys. Lett.
97
,
211903
(
2010
).
34.
C.
Janowitz
,
V.
Scherer
,
M.
Mohamed
,
A.
Krapf
,
H.
Dwelk
,
R.
Manzke
,
Z.
Galazka
,
R.
Uecker
,
K.
Irmscher
,
R.
Fornari
,
M.
Michling
,
D.
Schmeißer
,
J. R.
Weber
,
J. B.
Varley
, and
C. G.
Van de Walle
, “
Experimental electronic structure of In2O3 and Ga2O3
,”
New J. Phys.
13
,
085014
(
2011
).
35.
K.
Ghosh
and
U.
Singisetti
, “
Ab initio velocity-field curves in monoclinic β-Ga2O3
,”
J. Appl. Phys.
122
,
035702
(
2017
).
36.
K.
Ghosh
and
U.
Singisetti
, “
Impact ionization in β-Ga2O3
,”
J. Appl. Phys.
124
,
085707
(
2018
).
37.
A.
Singh
,
O.
Koksal
,
N.
Tanen
,
J.
McCandless
,
D.
Jena
,
H. G.
Xing
,
H.
Peelaers
, and
F.
Rana
, “
Intra- and inter-conduction band optical absorption processes in β-Ga2O3
,”
Appl. Phys. Lett.
117
,
072103
(
2020
).
38.
D.
Shinohara
and
S.
Fujita
, “
Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Ga2O3 substrates by ultrasonic mist chemical vapor deposition
,”
Jpn. J. Appl. Phys.
47
,
7311
7313
(
2008
).
39.
R. H.
French
, “
Electronic band structure of Al2O3, with comparison to AlON and AIN
,”
J. Am. Ceram. Soc.
73
,
477
489
(
1990
).
40.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
,
J.
Ibañez-Azpiroz
,
H.
Lee
,
J.-M.
Lihm
,
D.
Marchand
,
A.
Marrazzo
,
Y.
Mokrousov
,
J. I.
Mustafa
,
Y.
Nohara
,
Y.
Nomura
,
L.
Paulatto
,
S.
Poncé
,
T.
Ponweiser
,
J.
Qiao
,
F.
Thöle
,
S. S.
Tsirkin
,
M.
Wierzbowska
,
N.
Marzari
,
D.
Vanderbilt
,
I.
Souza
,
A. A.
Mostofi
, and
J. R.
Yates
, “
Wannier90 as a community code: New features and applications
,”
J. Phys.: Condens. Matter
32
,
165902
(
2020
).
41.
R.
Wang
,
E. A.
Lazar
,
H.
Park
,
A. J.
Millis
, and
C. A.
Marianetti
, “
Selectively localized Wannier functions
,”
Phys. Rev. B
90
,
165125
(
2014
).
42.
S.
Coh
and
D.
Vanderbilt
, “Python tight binding (PythTB)” (2013).
43.
P.
Vogl
,
H. P.
Hjalmarson
, and
J. D.
Dow
, “
A semi-empirical tight-binding theory of the electronic structure of semiconductors
,”
J. Phys. Chem. Solids
44
,
365
378
(
1983
).
44.
S.
Mu
,
H.
Peelaers
,
Y.
Zhang
,
M.
Wang
, and
C. G.
Van de Walle
, “
Orientation-dependent band offsets between (AlxGa1x)2O3 and Ga2O3
,”
Appl. Phys. Lett.
117
,
252104
(
2020
).
45.
G. C.
Kallinteris
,
N. I.
Papanicolaou
,
G. A.
Evangelakis
, and
D. A.
Papaconstantopoulos
, “
Tight-binding interatomic potentials based on total-energy calculation: Application to noble metals using molecular-dynamics simulation
,”
Phys. Rev. B
55
,
2150
2156
(
1997
).
46.
R. E.
Cohen
,
M. J.
Mehl
, and
D. A.
Papaconstantopoulos
, “
Tight-binding total-energy method for transition and noble metals
,”
Phys. Rev. B
50
,
14694
(
1994
).

Supplementary Material

You do not currently have access to this content.