Mechanical properties of lithium molybdate single crystals, Li2MoO4, are studied from room temperature to 650 °C. Density functional theory calculations gave the seven elastic constants of the rhombohedral crystal at 0 K. Brillouin light scattering experiments delivered comparable values at room temperature, and measurements up to 650 °C show a linear decrease in the constants with temperature. Nano-indentation results were typical of a brittle material with a low Young modulus and allowed deriving Young's moduli, for c (63 GPa) and m (48 GPa) faces, in agreement with those computed from measured elastic constants. Compressive rupture tests were performed. At 650 °C, the rupture stress was in the range 2–7.5 MPa. No clear evidence of a plastic regime was observed before cracking, even at temperatures close to the melting point.

1.
W.
Zachariasen
,
Notiz über die Kristallstruktur von Phenakit, Willemit und Verwandten Verbidungen
(
Mineralogisches Institut der Universität Oslo
,
1926
).
2.
U.
Kolitsch
, “
The crystal structures of phenacite-type Li2(MoO4), and scheelite-type LiY(MoO4)2 and LiNd(MoO4)2
,”
Z. Kristallogr. Cryst. Mater.
216
,
449
454
(
2001
).
3.
D. A.
Spassky
,
V.
Nagirnyi
,
A. E.
Savon
,
I. A.
Kamenskikh
,
O. P.
Barinova
,
S. V.
Kirsanova
,
V. D.
Grigorieva
,
N. V.
Ivannikova
,
V. N.
Shlegel
,
E.
Aleksanyan
,
A. P.
Yelisseyev
, and
A.
Belsky
, “
Low temperature luminescence and charge carrier trapping in a cryogenic scintillator Li2MoO4
,”
J. Lumin.
166
,
195
202
(
2015
).
4.
V. I.
Spitsyn
and
I. M.
Kuleshov
, “
An investigation of the thermal stability and volatility of normal molybdates of the alkali metals
,”
J. Gen. Chem. USSR
21
,
445
448
(
1951
).
5.
O.
Barinova
,
S.
Kirsanova
,
A.
Sadovskiy
, and
I.
Avetissov
, “
Properties of Li2MoO4 single crystals grown by Czochralski technique
,”
J. Cryst. Growth
401
,
853
856
(
2014
).
6.
M.
Velazquez
,
P.
Veber
,
M.
Moutatouia
,
P.
de Marcillac
,
A.
Giuliani
,
P.
Loaiza
,
D.
Denux
,
R.
Decourt
,
H.
El Hafid
,
M.
Laubenstein
,
S.
Marnieros
,
C.
Nones
,
V.
Novati
,
E.
Olivieri
,
D. V.
Poda
, and
A. S.
Zolotarova
, “
Exploratory growth in the Li2MoO4-MoO3 system for the next crystal generation of heat-scintillation cryogenic bolometers
,”
Solid State Sci.
65
,
41
51
(
2017
).
7.
V. D.
Grigorieva
,
V. N.
Shlegel
,
Y. A.
Borovlev
,
A. A.
Ryadun
, and
T. B.
Bekker
, “
Bolometric molybdate crystals grown by low-thermal-gradient Czochralski technique
,”
J. Cryst. Growth
523
,
125144
(
2019
).
8.
D. A.
Spassky
,
N. S.
Kozlova
,
V.
Nagirnyi
,
A. E.
Savon
,
Y. A.
Hizhnyi
, and
S. G.
Nedilko
, “
Excitation energy transfer to luminescence centers in MIIMoO4 (MII = Ca, Sr, Zn, Pb) and Li2MoO4
,”
J. Lumin.
186
,
229
237
(
2017
).
9.
R.
Yamdagni
,
C.
Pupp
, and
R. F.
Porter
, “
Mass spectrometric study of the evaporation of lithium and sodium molybdates and tungstates
,”
J. Inorg. Nucl. Chem.
32
,
3509
3523
(
1970
).
10.
E. K.
Kazenas
,
I. O.
Samoilova
,
G. K.
Asthakova
, and
O. A.
Ovchinnikova
, “
Mass-spectrometric data on the thermodynamics of lithium molybdates evaporation
,”
Russ. Metall. (Met.)
1
,
41
45
(
1999
).
11.
P. V.
Panasyuk
and
I. D.
Tretyak
, “
Thermal conductivity and thermal expansion of lithium molybdate single crystals
,”
Sov. Phys. Solid State
15
(
12
),
2442
(
1974
).
12.
E.
Armengaud
,
C.
Augier
,
A. S.
Barabash
,
F.
Bellini
,
G.
Benato
,
A.
Benoît
,
M.
Beretta
,
L.
Bergé
,
J.
Billard
,
Y. A.
Borovlev
,
C.
Bourgeois
,
V. B.
Brudanin
,
P.
Camus
,
L.
Cardani
,
N.
Casali
,
A.
Cazes
,
M.
Chapellier
,
F.
Charlieux
,
D.
Chiesa
,
M.
de Combarieu
,
I.
Dafinei
,
F. A.
Danevich
,
M.
De Jesus
,
T.
Dixon
,
L.
Dumoulin
,
K.
Eitel
,
F.
Ferri
,
B. K.
Fujikawa
,
J.
Gascon
,
L.
Gironi
,
A.
Giuliani
,
V. D.
Grigorieva
,
M.
Gros
,
E.
Guerard
,
D. L.
Helis
,
H. Z.
Huang
,
R.
Huang
,
J.
Johnston
,
A.
Juillard
,
H.
Khalife
,
M.
Kleifges
,
V. V.
Kobychev
,
Y. G.
Kolomensky
,
S. I.
Konovalov
,
A.
Leder
,
P.
Loaiza
,
L.
Ma
,
E. P.
Makarov
,
P.
de Marcillac
,
R.
Mariam
,
L.
Marini
,
S.
Marnieros
,
D.
Misiak
,
X.-F.
Navick
,
C.
Nones
,
E. B.
Norman
,
V.
Novati
,
E.
Olivieri
,
J. L.
Ouellet
,
L.
Pagnanini
,
P.
Pari
,
L.
Pattavina
,
B.
Paul
,
M.
Pavan
,
H.
Peng
,
G.
Pessina
,
S.
Pirro
,
D. V.
Poda
,
O. G.
Polischuk
,
S.
Pozzi
,
E.
Previtali
,
T.
Redon
,
A.
Rojas
,
S.
Rozov
,
C.
Rusconi
,
V.
Sanglard
,
J. A.
Scarpaci
,
K.
Schäffner
,
B.
Schmidt
,
Y.
Shen
,
V. N.
Shlegel
,
B.
Siebenborn
,
V.
Singh
,
C.
Tomei
,
V. I.
Tretyak
,
V. I.
Umatov
,
L.
Vagneron
,
M.
Velázquez
,
B.
Welliver
,
L.
Winslow
,
M.
Xue
,
E.
Yakushev
,
M.
Zarytskyy
, and
A. S.
Zolotarova
, “
A new limit for neutrinoless double-beta decay of 100Mo from the CUPID-Mo experiment
,”
Phys. Rev. Lett.
126
(
18
),
181802
(
2021
).
13.
M.
Martínez
,
N.
Coron
,
C.
Ginestra
,
J.
Gironnet
,
V.
Gressier
,
J.
Leblanc
,
P.
de Marcillac
,
T.
Redon
,
P.
Di Stefano
,
L.
Torres
,
P.
Veber
,
M.
Velázquez
, and
O.
Viraphong
, “
Scintillating bolometers for fast neutron spectroscopy in rare events searches
,”
J. Phys. Conf. Ser.
375
,
012025
(
2012
).
14.
A. H.
Abdelhameed
,
G.
Angloher
,
P.
Bauer
,
A.
Bento
,
E.
Bertoldo
,
C.
Bucci
,
L.
Canonica
,
A.
D’Addabbo
,
X.
Defay
,
S.
Di Lorenzo
,
A.
Erb
,
F. v.
Feilitzsch
,
N.
Ferreiro Iachellini
,
S.
Fichtinger
,
A.
Fuss
,
P.
Gorla
,
D.
Hauff
,
J.
Jochum
,
A.
Kinast
,
H.
Kluck
,
H.
Kraus
,
A.
Langenkämper
,
M.
Mancuso
,
V.
Mokina
,
E.
Mondragon
,
A.
Münster
,
M.
Olmi
,
T.
Ortmann
,
C.
Pagliarone
,
L.
Pattavina
,
F.
Petricca
,
W.
Potzel
,
F.
Pröbst
,
F.
Reindl
,
J.
Rothe
,
K.
Schäffner
,
J.
Schieck
,
V.
Schipperges
,
D.
Schmiedmayer
,
S.
Schönert
,
C.
Schwertner
,
M.
Stahlberg
,
L.
Stodolsky
,
C.
Strandhagen
,
R.
Strauss
,
C.
Türkoğlu
,
I.
Usherov
,
M.
Willers
,
V.
Zema
,
M.
Chapellier
,
A.
Giuliani
,
C.
Nones
,
D. V.
Poda
,
V. N.
Shlegel
,
M.
Velázquez
, and
A. S.
Zolotarova
, “
First results on sub-GeV spin-dependent dark matter with 7Li
,”
Eur. Phys. J. C
79
(
7
),
630
(
2019
).
15.
A.
Ahmine
,
M.
Velazquez
,
V.
Nagirnyi
,
I.
Romet
, and
T.
Duffar
, “
Conventional Czochralski growth of large Li2MoO4 single crystals
,”
J. Cryst. Growth
578
,
126420
(
2022
).
16.
A.
Ahmine
, “
Croissance Czochralski, comportement et propriétés mécaniques de cristaux massifs de Li2MoO4 pour bolomètres scintillants
,”
Ph.D. thesis
(
Université Grenoble Alpes
,
2021
) (
in French
).
17.
C.
Stelian
,
M.
Velazquez
,
P.
Veber
,
A.
Ahmine
,
T.
Duffar
,
P.
de Marcillac
,
A.
Giuliani
,
D. V.
Poda
,
S.
Marnieros
,
C.
Nones
,
V.
Novati
,
E.
Olivieri
,
A. S.
Zolotarova
,
H.
Cabane
, and
T.
Redon
, “
Experimental and numerical investigations of the Czochralski growth of Li2MoO4 crystals for heat-scintillation cryogenic bolometers
,”
J. Cryst. Growth
531
,
125385
(
2020
).
18.
G.
Buşe
,
A.
Giuliani
,
P.
de Marcillac
,
S.
Marnieros
,
C.
Nones
,
V.
Novati
,
E.
Olivieri
,
D. V.
Poda
,
T.
Redon
,
J.-B.
Sand
,
P.
Veber
,
M.
Velázquez
, and
A. S.
Zolotarova
, “
First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
891
,
87
91
(
2018
).
19.
E. N.
Galashov
,
T. M.
Denisova
,
I. M.
Ivanov
,
E. P.
Makarov
,
V. N.
Mamontov
,
V. N.
Schlegel
,
Y. G.
Stenin
,
Y. V.
Vasiliev
, and
V. N.
Zhdankov
, “
Growing of 106CdWO4, ZnWO4, and ZnMoO4 scintillation crystals for rare events search by low thermal gradient Czochralski technique
,”
Funct. Mater.
17
,
504
(
2010
).
20.
D.
Faurie
,
N.
Girodon-Boulandet
,
A.
Kaladjian
,
F.
Challali
,
G.
Abadias
, and
P.
Djemia
, “
Setup for high-temperature surface Brillouin light scattering: Application to opaque thin films and coatings
,”
Rev. Sci. Instrum.
88
,
023903
(
2017
).
21.
F.
Bahrami
,
M.
Hammad
,
M.
Fivel
,
B.
Huet
,
C.
D’Haese
,
L.
Ding
,
B.
Nysten
,
H.
Idrissi
,
J. P.
Raskin
, and
T.
Pardoen
, “
Single layer graphene controlled surface and bulk indentation
,”
Int. J. Plast.
138
,
102936
(
2021
).
22.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
23.
G.
Kresse
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
24.
C.
Malgrange
,
C.
Ricolleau
, and
F.
Lefaucheux
,
Symétrie et Propriétés Physiques des Cristaux
, Savoirs Actuels Series (
EDP Sciences
,
2011
), ISBN: 978 2 7598 0499 3.
25.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
27.
Y.
Le Page
and
P.
Saxe
, “
Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations
,”
Phys. Rev. B
63
,
174103
(
2001
).
28.
Y.
Le Page
and
P.
Saxe
, “
Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress
,”
Phys. Rev. B
65
,
10410453
(
2002
).
29.
M. G.
Beghi
,
Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices
(
Intech Open
,
2013
), Chap. 9, p.
2009
.
30.
J. W.
Jaeken
and
S.
Cottenier
, “
Solving the Christoffel equation: Phase and group velocities
,”
Comput. Phys. Commun.
207
,
445
451
(
2016
).
31.
Y. P.
Varshni
, “
Temperature dependance of the elastic constants
,”
Phys. Rev. B
2
,
3952
3958
(
1970
).
32.
W. C.
Oliver
and
G. M.
Pharr
, “
An improved technique for determining hardness and elastic modulus
,”
J. Mater. Res.
7
,
1564
1583
(
1992
).
33.
R.
Sevcik
,
P.
Sasek
, and
A.
Viani
, “
Physical and nanomechanical properties of the synthetic anhydrous crystalline CaCO3 polymorphs: Vaterite, aragonite and calcite
,”
J. Mater. Sci.
53
,
4022
4033
(
2018
).
34.
A.
Pavese
,
M.
Catti
,
S. C.
Parker
, and
A.
Wall
, “
Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3
,”
Phys. Chem. Miner.
23
,
89
93
(
1996
).
35.
N.
Sebehi
,
K.
Bouamama
,
P.
Djemia
, and
K.
Kassali
, “
Structural and elastic properties of ternary silicides ScTSi (T=Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) and of the equiatomic intermetallic compounds YTX (T=Ni, Ir and X-Si, Ge, Sn, Pb)
,”
Phys. Status Solidi B
252
,
2769
2777
(
2015
).
36.
D. G.
Pettifor
, “
Theoretical predictions of structure and related properties of intermetallics
,”
Mater. Sci. Technol.
8
,
345
349
(
1992
).
37.
T.
Chudoba
,
P.
Schwaller
,
R.
Rabe
,
J.-M.
Breguet
, and
J.
Michler
, “
Comparison of nanoindentation results obtained with Berkovich and cube-corner indenter
,”
Philos. Mag.
86
,
5265
5283
(
2006
).
38.
D.
Tabor
, “
The physical meaning of indentation and scratch hardness
,”
Br. J. Appl. Phys.
7
,
159
166
(
1956
).
39.
J. J.
Gilman
, in
The Science of Hardness Testing and Its Research Applications
, edited by
J. H.
Westbrook
and
H.
Conrad
(
American Society for Metals
,
1973
), pp.
51
74
. Cited in
T.
Breteau
 et al,
Adv. Phys.
28
,
835
1014
(
1979
).
40.
S. F.
Pugh
, “
Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
45
,
823
843
(
1954
).
41.
E.
Savrun
,
C.
Toy
,
W. D.
Scott
, and
D. C.
Harris
,
Proc. SPIE
3705
,
12
16
(
1999
).
42.
J.
Castaing
,
A.
Mufioz
,
D.
Gomez Garcia
, and
A.
Dominguez Rodriguez
, “
Basal slip in sapphire (a-Al2O3)
,”
Mater. Sci. Eng., A
233
,
121
125
(
1997
).
43.
C.
Parlangeau
,
A.
Dimanov
,
O.
Lacombe
,
S.
Hallais
, and
J.-M.
Daniel
, “
Uniaxial compression of calcite single crystals at room temperature: Insights into twinning activation and development
,”
Solid Earth
10
,
307
316
(
2019
).
44.
J. H. P.
De Bresser
and
C. J.
Spiers
, “
Slip systems in calcite single crystals deformed at 300-800°C
,”
J. Geophys. Res. Solid Earth
98
,
6397
6409
, https://doi.org/10.1029/92JB02044 (
1993
).
45.
P.
Haasen
, “
Dislocations and the plasticity of ionic crystals
,”
Mater. Sci. Technol.
1
,
1013
1024
(
1985
).
You do not currently have access to this content.