In this article, we proposed a noncontact testing scheme for micrometer to sub-micrometer level ultrasonic vibration mainly generated by laser ultrasound upon the novel utilization of near-field microwaves. The measurement was performed based on a Ku-band near-field resonator-probe, which was optimized to perceive the low amplitude out-of-plane vibration in the ultrasonic range. A near-field electromagnetic measurement theory was established to help analyze the sensitivity and responsivity of the resonator-probe outfit. The electric field parameters were extracted with respect to the port based on a lumped-circuit model, which was further validated using a finite-element model. Experiments were carried out with respect to a piezoelectric ceramic disk designed to generate vibrations of desired amplitude, which is compatible to that in laser ultrasonic testing. The accuracy of the technique was assessed by comparing with the laser vibrometer measurement results. It was verified that the proposed near-field microwave probe can achieve considerable accuracy in perceiving sub-micrometer ultrasonic vibration up to 180 kHz.

1.
Y.
Zhan
,
C.
Liu
,
J.
Zhang
,
G.
Mo
, and
C.
Liu
, “
Measurement of residual stress in laser additive manufacturing TC4 titanium alloy with the laser ultrasonic technique
,”
Mater. Sci. Eng. A
762
,
138093
(
2019
).
2.
L.
Liu
,
C.
Guo
,
L.
Wang
, and
H.
Mei
, “
Nondestructive visualization and quantitative characterization of defects in silicone polymer insulators based on laser shearography
,”
IEEE Sens. J.
19
(
15
),
6508
6516
(
2019
).
3.
J. N.
Bixler
,
B. H.
Hokr
,
M. L.
Denton
,
G. D.
Noojin
,
A. D.
Shingledecker
,
H. T.
Beier
,
R. J.
Thomas
,
B. A.
Rockwell
, and
V. V.
Yakovelv
, “
Assessment of tissue heating under tunable near-infrared radiation
,”
J. Biomed. Opt.
19
(
7
),
70501
(
2014
).
4.
Laser Ultrasonic Thermoelastic/Ablation Generation with Laser Interferometric Detection in Graphite/Polymer Composites
, edited by
J. N.
Caron
,
J. B.
Mehl
, and
K. V.
Steiner
(
Springer US
,
1996
).
5.
D. A.
Hutchins
,
F.
Nadeau
, and
P.
Cielo
, “
A pulsed photoacoustic investigation of ultrasonic mode conversion
,”
Can. J. Phys.
64
(
9
),
1334
1340
(
1986
).
6.
S. J.
Davies
,
C.
Edwards
,
G. S.
Taylor
, and
S. B.
Palmer
, “
Laser-generated ultrasound: Its properties, mechanisms and multifarious applications
,”
J. Phys. D: Appl. Phys.
26
(
3
),
329
(
1999
).
7.
O.
Emile
and
J.
Emile
, “
Laser-induced vibration of a thin soap film
,”
Lab Chip
14
(
18
),
3525
3529
(
2014
).
8.
H. S.
Hsieh
and
J.
Lin
, “
Laser-induced vibration during pulsed laser forming
,”
Opt. Laser Technol.
36
(
6
),
431
439
(
2004
).
9.
H. T.
Huan
,
A.
Mandelis
,
L. X.
Liu
,
B.
Lashkari
, and
A.
Melnikov
, “
Application of linear frequency modulated laser ultrasonic radar in reflective thickness and defect non-destructive testing
,”
NDT&E Int.
102
,
84
89
(
2019
).
10.
Y. X.
Sun
,
D. N.
Fang
,
M.
Saka
, and
A. K.
Soh
, “
Laser-induced vibrations of micro-beams under different boundary conditions
,”
Int. J. Solids Struct.
45
(
7
),
1993
2013
(
2008
).
11.
N. M.
Daud
,
M. K.
Saidin
,
N.
Bidin
, and
Y. M.
Daud
,
Laser Beam Modulation by an Acousto Optic Mode Locker. Faculty of Science
(
University Teknologi
,
2006
), Vol. 1, pp.
16
21
.
12.
M.
Tarabini
,
B.
Saggin
,
D.
Scaccabarozzi
, and
G.
Moschioni
, “
The potential of micro-electro-mechanical accelerometers in human vibration measurements
,”
J. Sound Vib.
331
(
2
),
487
499
(
2012
).
13.
K.
Medeiros
,
F.
de Oliveira
,
C.
Barbosa
, and
E.
de Oliveira
, “
Optimization of flow rate measurement using piezoelectric accelerometers: Application in water industry
,”
Measurement
91
,
576
581
(
2016
).
14.
J.
Zhang
,
Y. Y.
Cheng
,
Q.
Xia
, and
Z. S.
Wu
, “
Change localization of a steel-stringer bridge through long-gauge strain measurements
,”
J. Bridge Eng.
21
(
3
),
04015057
(
2016
).
15.
G.
Alfaro Degan
,
G.
Coltrinari
, and
D.
Lippiello
, “
Analysis of ground-transducer coupling in monitoring vibration from railways: A case study
,”
Int. J. Transp. Dev. Integr.
1
(
2
),
300
310
(
2017
).
16.
M.
Ueda
,
T.
Yamaguchi
, and
H.
Kakiuchi
, “
A simple optical method for measuring the vibration amplitude of a speaker
,”
Opt. Lasers Eng.
32
(
1
),
21
28
(
1999
).
17.
B.
Ferrer
,
J.
Espinosa
,
J.
Pérez
,
S.
Ivorra
, and
D.
Mas
, “
Optical scanning for structural vibration measurement
,”
Res. Nondestruct. Eval.
22
(
2
),
61
75
(
2011
).
18.
D.
Shetty
,
A.
Ali
, and
J.
Hill
, “
Optical instrumentation for vibration measurement and monitoring
,”
Int. J. Precis. Eng. Manuf.
12
(
3
),
405
411
(
2011
).
19.
A.
Chan
,
L.
Mongeau
, and
K.
Kost
, “
Vocal fold vibration measurements using laser Doppler vibrometry
,”
J. Acoust. Soc. Am.
133
(
3
),
1667
(
2013
).
20.
H. H.
Nassif
,
M.
Gindy
, and
J.
Davis
, “
Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration
,”
NDT E Int.
38
(
3
),
213
218
(
2005
).
21.
A. B.
Stanbridge
,
M.
Martarelli
, and
D. J.
Ewins
, “
Measuring area vibration mode shapes with a continuous-scan LDV
,”
Measurement
35
(
2
),
181
189
(
2004
).
22.
Z.
Li
,
A.
Haigh
,
C.
Soutis
, and
A.
Gibson
, “
Principles and applications of microwave testing for woven and non-woven carbon fibre-reinforced polymer composites: A topical review
,”
Appl. Compos. Mater.
25
(
4
),
965
982
(
2018
).
23.
Principles of Near-Field Microwave Microscopy
, edited by
S. M.
Anlage
,
V. V.
Talanov
, and
A. R.
Schwartz
(
Springer NT
,
2007
).
24.
C.
Gao
and
X. D.
Xiang
, “
Quantitative microwave near-field microscopy of dielectric properties
,”
Rev. Sci. Instrum.
69
(
11
),
3846
3851
(
1998
).
25.
G.
Gramse
,
M.
Kasper
,
L.
Fumagalli
,
G.
Gomila
,
P.
Hinterdorfer
, and
F.
Kienberger
, “
Calibrated complex impedance and permittivity measurements with scanning microwave microscopy
,”
Nanotechnology
25
(
14
),
145703
(
2014
).
26.
G.
Mansutti
,
A. T.
Mobashsher
,
K. S.
Bialkowski
,
B. J.
Mohammed
, and
A.
Abbosh
, “
Millimeter-wave substrate integrated waveguide probe for skin cancer detection
,”
IEEE Trans. Biomed. Eng.
67
(
9
),
2462
2472
(
2020
).
27.
X.
Jin
,
M.
Farina
,
X.
Wang
,
G.
Fabi
,
X.
Cheng
, and
J. C. M.
Hwang
, “
Quantitative scanning microwave microscopy of the evolution of a live biological cell in a physiological buffer
,”
IEEE Trans. Microw. Theory Tech.
67
(
12
),
5438
5445
(
2019
).
28.
A. G.
Every
,
Z. N.
Utegulov
, and
I. A.
Veres
, “
Laser thermoelastic generation in metals above the melt threshold
,”
J. Appl. Phys.
114
(
20
),
203508
(
2013
).
29.
Measuring Copper Surface Roughness for High Speed Applications
, edited by
J. A.
Marshall
(
MacDermid Inc.
,
2015
).
30.
F.
Keilmann
and
R.
Hillenbrand
, “
Near-field microscopy by elastic light scattering from a tip
,”
Philos. Trans. R. Soc. A.
362
(
1817
),
787
805
(
2004
).
31.
B. A.
Bagdad
,
C.
Lozano
, and
F.
Gamiz
, “
Near-field scanning microwave microscope platform based on a coaxial cavity resonator for the characterization of semiconductor structures
,”
Solid-State Electron.
159
,
150
156
(
2019
).
32.
H.
Guo
,
X.
Li
,
Q.
Zhu
,
Z. R.
Zhang
,
Y. S.
Liu
,
Z. H.
Li
,
H. F.
Wen
,
Y. J.
Li
,
J.
Tang
, and
J.
Liu
, “
Imaging nano-defect of metal waveguides using the microwave cavity interference enhancement method
,”
Nanotechnology
31
(
45
),
455203
(
2020
).
33.
S. S.
Tuca
,
G.
Badino
,
G.
Gramse
,
E.
Brinciotti
,
M.
Kasper
,
Y. J.
Oh
,
R.
Zhu
,
C.
Rankl
,
P.
Hinterdorfer
, and
F.
Kienberger
, “
Calibrated complex impedance of CHO cells and E. coli bacteria at GHz frequencies using scanning microwave microscopy
,”
Nanotechnology
27
(
13
),
135702
(
2016
).
34.
M. F.
Córdoba-Erazo
, “Near-field microwave microscopy for surface and subsurface characterization of materials,” Ph.D. dissertation (University of South Florida, 2015).
35.
Field and Wave Electromagnetics
, edited by
D. K.
Cheng
(
Addison-Wesley
,
1992
).
36.
F.
Duewer
,
C.
Gao
, and
X. D.
Xiang
, “
Tip-sample distance feedback control in a scanning evanescent microwave probe for nonlinear dielectric imaging
,”
Rev. Sci. Instrum.
71
(
6
),
2414
2417
(
2000
).
37.
L.
Wang
,
Z. X.
Xia
,
Y. J.
Cheng
, and
Y.
Fan
, “
A frequency reconfigurable microwave reaction cavity based on a quarter-wave coaxial cavity resonator
,” in
International Symposium on Antennas, Propagation and EM Theory (ISAPE)
(
IEEE
,
2012
), pp.
737
740
.
You do not currently have access to this content.