Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the kp Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of 103cm2V1s1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials.

1.
M.-Y.
Li
,
S.-K.
Su
,
H.-S. P.
Wong
, and
L.-J.
Li
,
Nature
567
,
169
170
(
2019
).
2.
J. M.
Shalf
and
R.
Leland
,
Computer
48
,
14
23
(
2015
).
3.
F.
Xia
,
H.
Wang
,
D.
Xiao
,
M.
Dubey
, and
A.
Ramasubramaniam
,
Nat. Photon.
8
,
899
907
(
2014
).
4.
F.
Schwierz
,
Nat. Nanotechnol.
5
,
487
496
(
2010
).
5.
L.
Tao
,
E.
Cinquanta
,
D.
Chiappe
,
C.
Grazianetti
,
M.
Fanciulli
,
M.
Dubey
,
A.
Molle
, and
D.
Akinwande
,
Nat. Nanotechnol.
10
,
227
231
(
2015
).
6.
L.
Li
,
Y.
Yu
,
G.
Jun Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
,
Nat. Nanotechnol.
9
,
372
377
(
2014
).
7.
Y.
Yoon
,
K.
Ganapathi
, and
S.
Salahuddin
,
Nano Lett.
11
,
3768
3773
(
2011
).
8.
Y.
Cui
,
R.
Xin
,
Z.
Yu
,
Y.
Pan
,
Z.-Y.
Ong
,
X.
Wei
,
J.
Wang
,
H.
Nan
,
Z.
Ni
,
Y.
Wu
,
T.
Chen
,
Y.
Shi
,
B.
Wang
,
G.
Zhang
,
Y.-W.
Zhang
, and
X.
Wang
,
Adv. Mater.
27
,
5230
5234
(
2015
).
9.
A. D.
Bartolomeo
,
F.
Urban
,
M.
Passacantando
,
N.
McEvoy
,
L.
Peters
,
L.
Iemmo
,
G.
Luongo
,
F.
Romeo
, and
F.
Giubileo
,
Nanoscale
11
,
1538
1548
(
2019
).
10.
J.
Lee
,
D.
Wong
,
J.
Velasco
, Jr.,
J. F.
Rodriguez-Nieva
,
S.
Kahn
,
H.-Z.
Tsai
,
T.
Taniguchi
,
K.
Watanabe
,
A.
Zettl
,
F.
Wang
,
L. S.
Levitov
, and
M. F.
Crommie
,
Nat. Phys.
12
,
1032
1036
(
2016
).
11.
C.
Gutiérrez
,
L.
Brown
,
C.-J.
Kim
,
J.
Park
, and
A. N.
Pasupathy
,
Nat. Phys.
12
,
1068
1076
(
2016
).
12.
H.
Alon
,
C.
Stern
,
M.
Kirshner
,
O.
Sinai
,
M.
Wasserman
,
R.
Selhors
,
R.
Gasper
,
A.
Ramasubramaniam
,
T. S.
Emrick
, and
D.
Naveh
,
ACS Nano
12
,
1928
1933
(
2018
).
13.
E.
Margapoti
,
J.
Li
,
O.
Ceylan
,
M.
Seifert
,
F.
Nisic
,
T.
Le Anh
,
F.
Meggendorfer
,
C.
Dragonetti
,
C.-A.
Palma
,
J. V.
Barth
, and
J. J.
Finley
,
Adv. Mater.
27
,
1426
(
2015
).
14.
D.
M.-Gustin
,
L.
Cabral
,
M. P.
Lima
,
J. L. F.
Da Silva
,
E.
Margapoti
, and
S. E.
Ulloa
,
Phys. Rev. B
98
,
241403(R)
(
2018
).
15.
C. C.
Price
,
N. C.
Frey
,
D.
Jariwala
, and
V. B.
Shenoy
,
ACS Nano
13
,
8303
8311
(
2019
).
16.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
A1138
(
1965
).
17.
C. W.
Groth
,
M.
Wimmer
,
A. R.
Akhmerov
, and
X.
Waintal
,
New J. Phys.
16
,
063065
(
2014
).
18.
M. L.
Van de Put
,
M. V.
Fischetti
, and
W. G.
Vandenberghe
,
Comput. Phys. Commun.
244
,
156
169
(
2019
).
19.
J.
Taylor
,
H.
Guo
, and
J.
Wang
,
Phys. Rev. B
63
,
245407
(
2001
).
20.
M.
Brandbyge
,
J. L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
1654011
(
2002
).
21.
Z.
Poursoti
,
W.
Sun
,
S.
Bharadwaj
,
M.
Malac
,
S.
Iyer
,
F.
Khosravi
,
K.
Cui
,
L.
Qi
,
N.
Nazemifard
,
R.
Jagannath
,
R.
Rahman
, and
Z.
Jacob
,
Opt. Express
30
,
12630
12638
(
2022
).
22.
S. K.
Adhikari
,
Am. J. Phys.
54
,
362
367
(
1986
); also see: S. K. Adhikari, Variational Principles and the Numerical Solution of Scattering Problems (John Wiley and Sons, New York, 1998).
23.
A.
Sommerfeld
,
Partial Differential Equations in Physics
(
Academic
,
New York
,
1949
).
24.
L.
Rayleigh
,
The Theory of Sound
(
Macmillan and Co., Ltd.
,
New York
,
1896
), Chap. 17, Vol. 2, pp. 236–284.
25.
H.
Faxen
and
J. P.
Holtsmark
,
Z. Phys.
45
,
307
(
1927
).
26.
L. D.
Landau
and
L. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
, 3rd ed. (
Butterworth-Heinemann
,
Amsterdam
,
2004
).
27.
M. L.
Goldberger
and
K. M.
Watson
,
Collision Theory
(
Dover Books
,
New York
,
2004
).
28.
J. J.
Sakurai
and
J.
Napolitano
,
Modern Quantum Mechanics
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
2021
).
29.
C. C.
Tannoudji
,
B.
Diu
, and
F.
Laloe
,
Quantum Mechanics
(
John Wiley & Sons Inc
,
New York
,
1991
), Vol. 2.
30.
T.
Liu
,
W.-D.
Li
, and
W.-S.
Dai
,
J. High Energy Phys.
2014
,
87
(
2014
).
31.
W.-D.
Li
and
W.-S.
Dai
,
J. Phys. A: Math. Theor.
49
,
465202
(
2016
).
32.
H. K.
Harbury
and
W.
Porod
,
J. Appl. Phys.
75
,
5142
5149
(
1994
).
33.
H.
Gan
,
P. L.
Levin
, and
R.
Ludwig
,
J. Acoust. Soc. Am.
94
,
1651
1662
(
1993
).
34.
L. R.
Ram-Mohan
,
Finite Element and Boundary Element Applications in Quantum Mechanics
(
Oxford University Press Inc.
,
New York
,
2002
).
35.
S.
Bharadwaj
and
L. R.
Ram-Mohan
,
J. Appl. Phys.
125
,
164306
(
2019
).
36.
S.
Bharadwaj
,
A.
lyashenko
,
A.
Gianfrancesco
, and
L. R.
Ram-Mohan
,
Trans. JASCOME
17
(
22
),
107
112
(
2017
).
37.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw-Hill Book Company
,
New York
,
1953
).
38.
O. C.
Zienkiewicz
and
Y. K.
Cheung
,
Finite Element Methods in Structural and Continuum Mechanics
(
McGraw-Hill
,
New York
,
1967
); O. C. Zienkiewicz, The Finite Element Method (McGraw-Hill, New York, 1977).
39.
J.
Jin
,
The Finite Element Method in Electromagnetics
, 2nd ed. (
Wiley
,
New York
,
2002
).
40.
J. M.
Luttinger
and
W.
Kohn
,
Phys. Rev.
97
,
869
883
(
1955
).
41.
J. M.
Luttinger
,
Phys. Rev.
102
,
1030
1041
(
1956
).
42.
G.
Bir
and
G.
Pikus
,
Symmetry and Strain-Induced Effects in Semiconductors
(
Wiley
,
New York
,
1974
).
43.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
A.
Jorio
,
Group Theory Application to the Physics of Condensed Matter
(
Springer
,
Berlin
,
2008
).
44.
S.
Haastrup
,
M.
Strange
,
M.
Pandey
,
T.
Deilmann
,
P. S.
Schmidt
,
N. F.
Hinsche
,
M. N.
Gjerding
,
D.
Torelli
,
P. M.
Larsen
,
A. C.
Riis-Jensen
,
J.
Gath
,
K. W.
Jacobsen
,
J. J.
Mortensen
,
T.
Olsen
, and
K. S.
Thygesen
,
2D Mater.
5
,
042002
(
2018
).
45.
B.
Chen
,
M.
Lazzouni
, and
L. R.
Ram-Mohan
,
Phys. Rev. B
45
,
1204
1212
(
1992
).
46.
P. O.
Lowdin
,
J. Chem. Phys.
19
,
1396
1401
(
1951
).
47.
E. O.
Kane
,
J. Phys. Chem. Solids
6
,
236
(
1958
).
48.
E. O.
Kane
, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1966), Vol. 1; see also, E. O. Kane, Handbook on Semiconductors, edited by W. Paul (North-Holland, Amsterdam, 1982), Vol. 1, p. 193.
49.
L. R.
Ram-Mohan
and
K.-H.
Yoo
,
J. Phys.: Condens. Matter
18
,
R901
R917
(
2006
).
50.
M.
Gell-Mann
and
M.
Levy
,
Nuovo Cimento
16
,
705
(
1960
).
51.
R. L.
Liboff
,
Kinetic Theory: Classical, Quantum, and Relativistic Descriptions
(
Springer
,
Berlin
,
2003
).
52.
J.
Bardeen
and
W.
Shockley
,
Phys. Rev.
80
,
72
80
(
1950
).
53.
K.
Kaasbjerg
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
Phys. Rev. B
85
,
115317
(
2012
).
54.
Z.
Jin
,
X.
Li
,
J. T.
Mullen
, and
K. W.
Kim
,
Phys. Rev. B
90
,
045422
(
2014
).
55.
X.
Li
,
J. T.
Mullen
,
Z.
Jin
,
K. M.
Borysenko
,
M. B.
Nardelli
, and
K. W.
Kim
,
Phys. Rev. B
87
,
115418
(
2013
).
56.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
57.
A.
Ovchinnikov
,
A.
Allain
,
Y.-S.
Huang
,
D.
Dumcenco
, and
A.
Kis
,
ACS Nano
8
,
8174
(
2014
).
58.
B.
Radisavljevic
and
A.
Kis
,
Nat. Mater.
12
,
815
(
2013
).
59.
D. M.
Gustin
,
S. E.
Ulloa
, and
V. L.
Richard
,
Phys. Rev. B
98
,
125301
(
2018
).
60.
H.
Zeng
,
J.
Dai
,
W.
Yao
,
D.
Xiao
, and
X.
Cui
,
Nat. Nanotechnol.
7
,
490
493
(
2012
).
61.
Y.
Ye
,
J.
Xiao
,
H.
Wang
,
Z.
Ye
,
H.
Zhu
,
M.
Zhao
,
Y.
Wang
,
J.
Zhao
,
X.
Yin
, and
X.
Zhang
,
Nat. Nanotechnol.
11
,
598
602
(
2016
).
62.
A.
Kormányos
,
V.
Zólyomi
,
N. D.
Drummond
, and
G.
Burkard
,
Phys. Rev. X
4
,
011034
(
2014
).
63.
G.-B.
Liu
,
H.
Pang
,
Y.
Yao
, and
W.
Yao
,
New J. Phys.
16
,
105011
(
2014
).
64.
Y.
Wu
,
Q.
Tong
,
G.-B.
Liu
,
H.
Yu
, and
W.
Yao
,
Phys. Rev. B
93
,
045313
(
2016
).
65.
J.
Pawlowski
,
D.
Zebrowski
, and
S.
Bednarek
,
Phys. Rev. B
97
,
155412
(
2018
).
66.
R.
Pisoni
,
Z.
Lei
,
P.
Back
,
M.
Eich
,
H.
Overweg
,
Y.
Lee
,
K.
Watanabe
,
T.
Taniguchi
,
T.
Ihn
, and
K.
Ensslin
,
Appl. Phys. Lett.
112
,
123101
(
2018
).
67.
O. A.
Ovando
,
D.
Mastrogiuseppe
, and
S. E.
Ulloa
,
Phys. Rev. B
99
,
035107
(
2019
).
68.
C.
Huang
,
S.
Wu
,
A. M.
Sanchez
,
J. J. P.
Peters
,
R.
Beanland
,
J. S.
Ross
,
P.
Rivera
,
W.
Yao
,
D. H.
Cobden
, and
X.
Xu
,
Nat. Mater.
13
,
1096
(
2014
).
69.
Y.
Gong
,
J.
Lin
,
X.
Wang
,
G.
Shi
,
S.
Lei
,
Z.
Lin
,
X.
Zou
,
G.
Ye
,
R.
Vajtai
,
B. I.
Yakobson
,
H.
Terrones
,
M.
Terrones
,
B. K.
Tay
,
J.
Lou
,
S. T.
Pantelides
,
Z.
Liu
,
W.
Zhou
, and
P. M.
Ajayan
,
Nat. Mater.
13
,
1135
(
2014
).
70.
X.
Duan
,
C.
Wang
,
J. C.
Shaw
,
R.
Cheng
,
Y.
Chen
,
H.
Li
,
X.
Wu
,
Y.
Tang
,
Q.
Zhang
,
A.
Pan
,
J.
Jiang
,
R.
Yu
,
Y.
Huang
, and
X.
Duan
,
Nat. Nanotechnol.
9
,
1024
(
2014
).
71.
X.-Q.
Zhang
,
C.-H.
Lin
,
Y.-W.
Tseng
,
K.-H.
Huang
, and
Y.-H.
Lee
,
Nano Lett.
15
,
410
(
2015
).
72.
M.-Y.
Li
,
Y.
Shi
,
C.-C.
Cheng
,
L.-S.
Lu
,
Y.-C.
Lin
,
H.-L.
Tang
,
M.-L.
Tsai
,
C.-W.
Chu
,
K.-H.
Wei
,
J.-H.
He
,
W.-H.
Chang
,
K.
Suenaga
, and
L.-J.
Li
,
Science
349
,
524
(
2015
).
73.
C.
Zhang
,
Y.
Chen
,
J.-K.
Huang
,
X.
Wu
,
L.-J.
Li
,
W.
Yao
,
J.
Tersoff
, and
C.-K.
Shih
,
Nat. Commun.
7
,
10349
(
2016
).
74.
C.
Zhang
,
M.-Y.
Li
,
J.
Tersoff
,
Y.
Han
,
Y.
Su
,
L.-J.
Li
,
D. A.
Muller
, and
C.-K.
Shih
,
Nat. Nanotechnol.
13
,
152
(
2018
).
75.
P. K.
Sahoo
,
S.
Memaran
,
Y.
Xin
,
L.
Balicas
, and
H. R.
Gutiérrez
,
Nature
553
,
63
(
2018
).
76.
S.
Xie
,
L.
Tu
,
Y.
Han
,
L.
Huang
,
K.
Kang
,
K. U.
Lao
,
P.
Poddar
,
C.
Park
,
D. A.
Muller
,
R. A.
DiStasio
, and
J.
Park
,
Science
359
,
1131
(
2018
).
77.
J.
Wang
,
Z.
Li
,
H.
Chen
,
G.
Deng
, and
X.
Niu
,
Nano-Micro Lett.
11
,
48
(
2019
).
78.
A.
Kormányos
,
G.
Burkard
,
M.
Gmitra
,
J.
Fabian
,
V.
Zólyomi
,
N. D.
Drummond
, and
V. I.
Fal’ko
,
2D Mater.
2
,
022001
(
2015
); See also, A. Kormányos, V. Zólyomi, N. D. Drummond, G. Burkard, and V. I. Fal’ko, Phys. Rev. B 88 045416 (2013).
79.
B. A.
Foreman
,
Phys. Rev. B
56
,
R12748
(
1997
).
80.
U.
Fano
,
Phys. Rev.
124
,
1866
1878
(
1961
); U. Fano and J. W. Cooper, ibid137, A1364–A1379 (1965).
81.
S.
Bharadwaj
and
L. R.
Ram-Mohan
,
J. Appl. Phys.
125
,
164307
(
2019
).
82.
S.
Bharadwaj
,
A.
Ramasubramaniam
, and
L. R.
Ram-Mohan
, arXiv:2012.02056 (2020).
83.
K.
Kaasbjerg
,
T.
Low
, and
A.-P.
Jauho
,
Phys. Rev. B
100
,
115409
(
2019
).
84.
I. R.
Lapidus
,
Am. J. Phys.
54
,
459
461
(
1986
).
85.
S.
McAlinden
and
J.
Shertzer
,
Am. J. Phys.
84
,
764
769
(
2016
).
86.
P. G.
Kassebaum
,
C. R.
Boucher
, and
L. R.
Ram-Mohan
,
J. Comput. Phys.
231
,
5747
5760
(
2012
).
You do not currently have access to this content.