In this paper, we present results of plate impact simulations of shock compressed woven glass fiber-reinforced plastic (GRP) performed using the Arbitrary Lagrangian–Eulerian three-dimensional finite element code. A hyperelastic large-strain-based empirical Continuum Damage Mechanics (CDM) formulation is employed to describe damage initiation and growth in the shock-compressed GRP. The model parameters calibration scheme utilizes the Velocity Interferometer System for Any Reflector normal particle velocity measurements at the free surface of the GRP target plates. The impact velocity in the experiments ranged from 8.5 to 418 m/s. The finite element model considered planar 0°/90° bidirectional plies with an individual ply thickness of 0.68 mm, stacked to reach a total laminate thickness of 6.8 mm. The anisotropic elastic strains were estimated from the experimentally determined tetragonal symmetry stiffness matrix for the GRP. The strain-based damage model captures several salient features observed in the measured free surface particle wave profiles, including the shock rise time, onset of Elastic—Elastic Cracking, and the shape of the nonlinear portion of the experimental particle velocity profiles. The CDM model predicts the dominant damage mode to be matrix microcracking due to shear and the associated bulk expansion (bulking) under the global compressive loading in the plate impact configuration.
Skip Nav Destination
Article navigation
28 April 2022
Research Article|
April 27 2022
A new woven composite constitutive model validated by shock wave experiments
Nicholas R. Scott
;
Nicholas R. Scott
1
University of Mississippi
, Oxford, Mississippi 38655, USA
Search for other works by this author on:
Arunachalam Rajendran
;
Arunachalam Rajendran
a)
1
University of Mississippi
, Oxford, Mississippi 38655, USA
a)Author to whom correspondence should be addressed: raj@olemiss.edu
Search for other works by this author on:
Matthew D. Nelms
;
Matthew D. Nelms
2
Lawrence Livermore National Laboratory
, Livermore, California 94550, USA
Search for other works by this author on:
Vikas Prakash
Vikas Prakash
3
Institute for Shock Physics, Washington State University
, Pullman, Washington 99164, USA
Search for other works by this author on:
a)Author to whom correspondence should be addressed: raj@olemiss.edu
J. Appl. Phys. 131, 165905 (2022)
Article history
Received:
January 24 2022
Accepted:
April 08 2022
Citation
Nicholas R. Scott, Arunachalam Rajendran, Matthew D. Nelms, Vikas Prakash; A new woven composite constitutive model validated by shock wave experiments. J. Appl. Phys. 28 April 2022; 131 (16): 165905. https://doi.org/10.1063/5.0086315
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
366
Views