In this paper, we present results of plate impact simulations of shock compressed woven glass fiber-reinforced plastic (GRP) performed using the Arbitrary Lagrangian–Eulerian three-dimensional finite element code. A hyperelastic large-strain-based empirical Continuum Damage Mechanics (CDM) formulation is employed to describe damage initiation and growth in the shock-compressed GRP. The model parameters calibration scheme utilizes the Velocity Interferometer System for Any Reflector normal particle velocity measurements at the free surface of the GRP target plates. The impact velocity in the experiments ranged from 8.5 to 418 m/s. The finite element model considered planar 0°/90° bidirectional plies with an individual ply thickness of 0.68 mm, stacked to reach a total laminate thickness of 6.8 mm. The anisotropic elastic strains were estimated from the experimentally determined tetragonal symmetry stiffness matrix for the GRP. The strain-based damage model captures several salient features observed in the measured free surface particle wave profiles, including the shock rise time, onset of Elastic—Elastic Cracking, and the shape of the nonlinear portion of the experimental particle velocity profiles. The CDM model predicts the dominant damage mode to be matrix microcracking due to shear and the associated bulk expansion (bulking) under the global compressive loading in the plate impact configuration.

1.
J.-K.
Kim
and
M.-L.
Sham
,
Compos. Sci. Technol.
60
,
745
761
(
2000
).
2.
N.
Razali
,
M. T. H.
Sultan
,
F.
Mustapha
,
N.
Yidris
, and
M. R.
Ishak
,
Int. J. Eng. Sci.
3
,
8
20
(
2014
).
3.
Z.
Hashin
,
J. Appl. Mech.
47
,
329
334
(
1980
).
4.
G.
Davies
,
D.
Hitchings
, and
G.
Zhou
,
Composites, Part A
27
,
1147
1156
(
1996
).
5.
J. R.
Asay
and
J.
Lipkin
,
J. Appl. Phys.
49
,
4242
4247
(
1978
).
6.
L. M.
Barker
and
R. E.
Hollenbach
, “
Laser interferometer for measuring high velocities of any reflecting surface
,”
J. Appl. Phys.
43
,
4669
(
1972
).
7.
R. G.
McQueen
,
S. P.
Marsh
,
J. W.
Taylor
,
J. N.
Fritz
, and
W. J.
Carter
, in
High-Velocity Impact Phenomena
, edited by
R.
Kinslow
(
Academic Press
,
New York
,
1970
), pp.
293
417
.
8.
T.
Nicholas
and
A.
Rajendran
,
High Velocity Impact Dynamics
(
Wiley-Interscience
,
1990
), pp.
127
296
.
9.
N.
Chandra
,
X.
Chen
, and
A. M.
Rajendran
,
J. Compos. Technol. Res.
24
(
4
),
232
238
(
2002
).
10.
F. K.
Tsou
and
P. C.
Chou
,
J. Compos. Mater.
3
,
500
514
(
1969
).
11.
D. E.
Munson
and
K. W.
Schuler
,
J. Compos. Mater.
5
,
286
304
(
1971
).
12.
L.
Tsai
and
V.
Prakash
,
Int. J. Solids Struct.
42
,
727
750
(
2005
).
13.
J. M.
Boteler
,
A.
Rajendran
, and
D. J.
Grove
,
AIP Conf. Proc.
505
,
563
566
(
2000
).
14.
D. P.
Dandekar
,
C. A.
Hall
,
L. C.
Chhabildas
, and
W. D.
Reinhart
,
Compos. Struct.
61
,
51
59
(
2003
).
15.
P.
Kumar
and
R. J.
Clifton
,
J. Appl. Phys.
48
,
4850
(
1977
).
16.
L.
Tsai
,
V.
Prakash
,
A. M.
Rajendran
, and
D.
Dandekar
,
Appl. Phys. Lett.
90
,
061909
(
2007
).
17.
A. M.
Rajendran
,
N. S.
Brar
, and
M.
Khobaib
, in
Shock Compression of Condensed Matter-1989
, edited by
S. C.
Schmidt
,
J. N.
Johnson
, and
L. W.
Davidson
(
Elsevier
,
Amsterdam
,
1990
), pp.
401
404
.
18.
G. T.
Gray
,
American Physical Society Topical Conference on Shock Compression of Condensed Matter, 1989
(
American Physical Society
,
Albuquerque, NM
,
1989
).
19.
D. P.
Dandekar
,
J. M.
Botelera
, and
P. A.
Beaulieu
,
Compos. Sci. Technol.
58
,
1397
1403
(
1998
).
20.
Y.
Liu
,
X.
Si
,
P.
Liu
, and
X.
Zhang
,
Compos. Struct.
203
,
425
435
(
2018
).
21.
Y.
Liu
,
H.
Su
, and
C.
Chen
,
J. Aerosp. Eng.
33
(
5
),
04020049-1
04020049-12
(
2020
).
22.
Z.
Chen
,
Y.-C.
Su
,
A. M.
Rajendran
,
H.
Su
,
Y.
Liu
, and
S.
Jiang
,
Compos. Struct.
,
252
,
112751
(
2020
).
23.
L.
Tsai
,
F.
Yuan
,
V.
Prakash
, and
D. P.
Dandekar
,
J. Appl. Phys.
105
,
093526
(
2009
).
24.
M. I.
Barham
,
M.
King
,
J. G.
Mseis
, and
D. R.
Faux
, “Hyperelastic fiber-reinforced composite model with damage,” Technical Report LLNL-MI-644243, 2013.
25.
G. A.
Holzapfel
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
(
John Wiley & Sons, Ltd
,
New York
,
2005
).
26.
C.
Noble
,
A.
Anderson
,
N.
Barton
,
J.
Bramwell
,
A.
Capps
,
M.
Chang
,
J.
Chou
,
D.
Dawson
,
E.
Diana
,
T.
Dunn
,
D.
Faux
,
A.
Fisher
,
P.
Greene
,
I.
Heinz
,
Y.
Kanarska
,
S.
Khairallah
,
B.
Liu
,
J.
Margraf
,
A.
Nichols
,
R.
Nourgaliev
,
M.
Puso
,
J.
Reus
,
P.
Robinson
,
A.
Shestakov
,
J.
Solberg
,
D.
Taller
,
P.
Tsuji
,
C.
White
, and
J.
White
, “ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code,” Technical Report LLNL-TR-732040, 2017.
27.
D. E.
Grady
,
Appl. Phys. Lett.
38
,
825
826
(
1981
).
28.
D. E.
Grady
,
J. Appl. Phys.
107
,
013506
(
2010
).
29.
S.
Zhuang
,
G.
Ravichandran
, and
D. E.
Grady
,
J. Mech. Phys. Solids
51
,
245
265
(
2003
).
30.
B.
Zuanetti
,
T.
Wang
, and
V.
Prakash
,
Rev. Sci. Instrum.
88
,
033108
(
2017
).
31.
E.
Zaretsky
,
G.
deBotton
, and
M.
Perl
,
Int. J. Solids Struct.
41
,
569
584
(
2004
).
32.
H.
Horii
and
S.
Nemat-Nasser
,
J. Geophys. Res.
90
,
3105
, https://doi.org/10.1029/JB090iB04p03105 (
1985
).
33.
H.
Horii
and
S.
Nemat-Nasser
,
Philos. Trans. R. Soc. London, Ser. A
319
,
337
374
(
1986
).
34.
W.
Chen
and
G.
Ravichandran
,
J. Mech. Phys. Solids
45
,
1303
1328
(
1997
).
35.
F.
Yuan
,
V.
Prakash
, and
T.
Tullis
,
J. Geophys. Res.
116
, B06309, https://doi.org/10.1029/2010JB007721 (
2011
).
36.
R. M.
Jones
,
Mechanics of Composite Materials
(
CRC Press
,
Boca Raton, FL
,
1999
).
37.
C. A.
Weeks
and
C. T.
Sun
,
Compos. Sci. Technol.
58
,
603
611
(
1998
).
38.
D. J.
Steinberg
and
C. M.
Lund
,
J. Phys. Colloq.
49
,
C3-433
C3-440
(
1988
).
39.
D. E.
Grady
, “Shock and release data for SAC-5 concrete to 25GPa,” Technical Memorandum-TMDG0595, 1995.
40.
R. A.
Graham
, “Measurement of wave profiles in shock-loaded solids,” in
High-Pressure Science and Technology
, edited by K. D. Timmerhaus and M. S. Barber (Springer, Boston,
1979
).
41.
G. I.
Kanel
,
S. V.
Razorenov
,
A. S.
Savinykh
,
A.
Rajendran
, and
Z.
Chen
,
J. Appl. Phys.
98
,
113523
(
2005
).
42.
D. E.
Grady
,
J. Phys. IV
04
(
C8
),
C8-385
C8-391
(
1994
).
43.
A. M.
Rajendran
and
D. J.
Grove
,
Int. J. Impact Eng.
18
,
611
631
(
1996
).
You do not currently have access to this content.