We explore the benefits of combining properties of the radio frequency atomic magnetometer, namely, its insensitive axis and the ability of vector field measurement, with the symmetry of the primary radio frequency field in inductive imaging of objects. In particular, we present the results of measurements performed with a pair of radio frequency magnetic field coils with the same and opposite polarities, i.e., in- and opposite-phases. Implementing different coil configurations enhances various features of the objects such as surfaces or edges and helps identify the object composition.
REFERENCES
1.
H.
Griffiths
, “Magnetic induction tomography
,” Meas. Sci. Technol.
12
, 1126
–1131
(2001
). 2.
L.
Ma
and M.
Soleimani
, “Magnetic induction tomography methods and applications: A review
,” Meas. Sci. Technol.
28
, 072001
–072012
(2017
). 4.
B. A.
Auld
and J. C.
Moulder
, “Review of advances in quantitative eddy current nondestructive evaluation
,” J. Nondestr. Eval.
18
, 3
(1999
). 5.
I. M.
Savukov
, S. J.
Seltzer
, and M. V.
Romalis
, “Detection of NMR signals with a radio-frequency atomic magnetometer
,” J. Magn. Res.
185
, 214
(2007
). 6.
P.
Ripka
and M.
Janosek
, “Advances in magnetic field sensors
,” IEEE Sens. J.
10
, 1108
(2010
). 7.
T.
Dogaru
and S. T.
Smith
, “Edge crack detection using a giant magnetoresistance based eddy current sensor
,” Nondestr. Test. Eval.
16
, 31
(2000
). 8.
T.
Dogaru
and S. T.
Smith
, “Giant magnetoresistance-based eddy-current sensor
,” IEEE Trans. Magn.
37
, 3831
(2001
). 9.
W. N.
Podney
, “Performance measurements of a superconductive microprobe for eddy current evaluation of subsurface flaws
,” IEEE Trans. Appl. Supercond.
3
, 1914
(1993
). 10.
W. G.
Jenks
, S. S. H.
Sadeghi
, and J. P.
Wikswo
, “SQUIDs for nondestructive evaluation
,” J. Phys. D: Appl. Phys
30
, 293
(1997
). 11.
Y.
Hatsukade
, K.
Hayashi
, Y.
Shinyama
, Y.
Kobayashi
, S.
Adachi
, K.
Tanabe
, and S.
Tanaka
, “Characteristics of an HTS-SQUID gradiometer with ramp-edge Josephson junctions and its application on robot-based 3D-mobile compact SQUID NDE system
,” Physica C
471
, 1228
(2011
). 12.
A.
Wickenbrock
, S.
Jurgilas
, A.
Dow
, L.
Marmugi
, and F.
Renzoni
, “Magnetic induction tomography using an all-optical 87 Rb atomic magnetometer
,” Opt. Lett.
39
, 6367
(2014
). 13.
C.
Deans
, L.
Marmugi
, S.
Hussain
, and F.
Renzoni
, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer
,” Appl. Phys. Lett.
108
, 103503
(2016
). 14.
G.
Bevilacqua
, V.
Biancalana
, Y.
Dancheva
, A.
Fregosi
, G.
Napoli
, and A.
Vigilante
, “Electromagnetic induction imaging: Signal detection based on tuned-dressed optical magnetometry
,” Opt. Exp.
29
, 37081
(2021
). 15.
A.
Fregosi
, C.
Gabbanini
, S.
Gozzini
, L.
Lenci
, C.
Marinelli
, and A.
Fiorettii
, “Magnetic induction imaging with a cold-atom radio frequency magnetometer
,” Appl. Phys. Lett.
117
, 144102
(2020
). 16.
I.
Savukov
and T.
Karaulanov
, “Magnetic-resonance imaging of the human brain with an atomic magnetometer
,” Appl. Phys. Lett.
103
, 043703
(2013
). 17.
I.
Savukov
and T.
Karaulanov
, “Multi-flux-transformer MRI detection with an atomic magnetometer
,” J. Magn. Reson.
249
, 49
(2014
). 18.
S.
Colombo
, V.
Lebedev
, A.
Tonyushkin
, S.
Pengue
, and A.
Weis
, “Imaging magnetic nanoparticle distributions by atomic magnetometry-based susceptometry
,” IEEE Trans. Med. Imaging
39
, 922
(2020
). 19.
P.
Bevington
, R.
Gartman
, and W.
Chalupczak
, “Imaging of material defects with a radio-frequency atomic magnetometer
,” Rev. Sci. Instrum.
90
, 013103
(2019
). 20.
P.
Bevington
, R.
Gartman
, and W.
Chalupczak
, “Enhanced material defect imaging with a radio-frequency atomic magnetometer
,” J. Appl. Phys.
125
, 094503
(2019
). 21.
A.
Wickenbrock
, N.
Leefer
, J. W.
Blanchard
, and D.
Budker
, “Eddy current imaging with an atomic radio-frequency magnetometer
,” Appl. Phys. Lett.
108
, 183507
(2016
). 22.
P.
Bevington
, R.
Gartman
, and W.
Chalupczak
, “Inductive imaging of the concealed defects with radio-frequency atomic magnetometers
,” Appl. Sci.
10
, 6871
(2020
). 23.
P.
Bevington
, R.
Gartman
, and W.
Chalupczak
, “Alkali-metal spin maser for non-destructive tests
,” Appl. Phys. Lett.
115
, 173502
(2019
). 24.
P.
Bevington
, R.
Gartman
, and W.
Chalupczak
, “Magnetic induction tomography of structural defects with alkali-metal spin maser
,” Appl. Opt.
59
, 2276
(2020
). 25.
P.
Bevington
, R.
Gartman
, and W.
Chalupczak
, “Object detection with an alkali-metal spin maser
,” J. Appl. Phys.
130
, 214501
(2021
). 26.
P.
Bevington
, R.
Gartman
, D. J.
Botelho
, R.
Crawford
, M.
Packer
, T. M.
Fromhold
, and W.
Chalupczak
, “Object surveillance with radio-frequency atomic magnetometers
,” Rev. Sci. Instrum.
91
, 055002
(2020
). 27.
R.
Gartman
and W.
Chalupczak
, “Identification of the object composition with magnetic inductive tomography
,” Rev. Sci. Instrum.
92
, 115001
(2021
). 28.
In the spin maser mode, the signal produced by freely oscillating atomic coherences is used to drive the rf magnetic field and the system operates on resonance, i.e., the Larmor, frequency, even when the bias magnetic field strength changes rapidly. Low-frequency magnetic field variations, most notably 50 Hz noise, modulates the Larmor frequency. In the standard mode, the bias magnetic field must be stabilized to enable recording of the unperturbed rf spectra amplitude. In the spin maser mode, the signal always reflects unperturbed (on resonance) amplitude and stabilization is not required.
29.
C.
Deans
, L.
Marmugi
, and F.
Renzoni
, “Through-barrier electromagnetic imaging with an atomic magnetometer
,” Opt. Exp.
25
, 17911
–17917
(2017
). 30.
C.
Deans
, L.
Marmugi
, and F.
Renzoni
, “Active underwater detection with an array of atomic magnetometers
,” Appl. Opt.
57
, 2346
(2018
). 31.
L.
Marmugi
, C.
Deans
, and F.
Renzoni
, “Electromagnetic induction imaging with atomic magnetometers: Unlocking the low-conductivity regime
,” Appl. Phys. Lett.
115
, 083503
(2019
). 32.
P.
Bevington
, R.
Gartman
, W.
Chalupczak
, C.
Deans
, L.
Marmugi
, and F.
Renzoni
, “Non-destructive structural imaging of steelwork with atomic magnetometers
,” Appl. Phys. Lett.
113
, 063503
(2018
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.