Detecting cracks in teeth is a long-standing clinical challenge. Patients may complain of diffuse pain on chewing, pain, at times, on temperature change and pain that occurs episodically. Common diagnostic tools such as radiographs and visual examination may not detect cracks. This clinical case study shows how photothermal radiometry and luminescence (PTR-LUM), technology behind the Canary Dental Caries Detection System can detect and monitor cracks clinically as well as quantify the extent of crack. This important clinical feature is not yet available with other caries detection clinical devices. In this clinical situation, the cracks involved a large part of the mesial and distal of a mandibular second molar and the adjacent first molar. It led to a diagnosis of parafunction and placement of a mandibular flat plane bite splint along with the placement of composite restorations to restore the fractures. The science behind the point scan lock-in signal processing results of PTR-LUM technology implemented in The Canary System to clinically detect visible cracks or cracks beneath the enamel surface as well as caries on all tooth surfaces and around restorations is discussed. Amplitude and phase results from PTR-LUM point scans are incorporated into a Canary number output developed for oral health providers and are disclosed for the first time in detail with clinical evidence.

1.
C. E.
Cameron
, “
Cracked-tooth syndrome
,”
JADA
68
,
405
411
(
1964
).
2.
S.
Banerji
,
S. B.
Mehta
, and
B. J.
Millar
, “
Cracked tooth syndrome. Part 1: Aetiology and diagnosis
,”
Br. Dent. J.
208
(
10
),
459
463
(
2010
).
3.
S.
Hasan
,
K.
Singh
, and
N.
Salati
, “
Cracked tooth syndrome: Overview of literature
,”
Int. J. Appl. Basic Med. Res.
5
,
164
168
(
2015
).
4.
C. E.
Cameron
, “
The cracked tooth syndrome: Additional findings
,”
JADA
93
,
971
975
(
1976
).
5.
J. D.
Bader
,
J. A.
Martin
, and
D. A.
Shugars
, “
Preliminary estimates of the incidence and consequences of tooth fracture
,”
JADA
126
,
1650
1654
(
1995
).
6.
H.
Rosen
, “
Cracked tooth syndrome
,”
J. Prosthet. Dent.
47
,
36
43
(
1982
).
7.
J. D.
Bader
,
J. A.
Martin
, and
D. A.
Shugars
, “
Incidence rates for complete cusp fracture
,”
Community Dent. Oral Epidemiol.
29
,
346
353
(
2001
).
8.
B. V.
Braly
and
E. H.
Maxwell
, “
Potential for tooth fracture in restorative dentistry
,”
J. Prosthet. Dent.
45
,
411
414
(
1981
).
9.
M. E.
Gher
, Jr.
,
R. M.
Dunlap
,
M. H.
Anderson
, and
L. V.
Kuhl
, “
Clinical survey of fractured teeth
,”
JADA
114
,
174
187
(
1987
).
10.
C. I.
Homewood
, “
Cracked tooth syndrome—Incidence, clinical findings and treatment
,”
Aust. Dent. J.
43
,
217
222
(
1998
).
11.
S.
Ratcliff
,
I. M.
Becker
, and
L.
Quinn
, “
Type and incidence of cracks in posterior teeth
,”
J. Prosthet. Dent.
86
,
168
172
(
2001
).
12.
D.-G.
Seo
Y.
Young-Ah
 et al, “
Analysis of factors associated with cracked teeth
,”
JOE
38
(
3
),
288
292
(
2012
).
13.
B. D.
Roh
and
Y. E.
Lee
, “
Analysis of 154 cases of teeth with cracks
,”
Dent. Traumatol.
22
,
118
123
(
2006
).
14.
Institute AHP
, COVID 19: Economic Impact on Practices Week of February 15 American Dental Association 2021:130.
15.
A.
Emodi-Perlman
,
I.
Eli
,
J.
Smardz
 et al, “
Temporomandibular disorders and bruxism outbreak as a possible factor of orofacial pain worsening during the COVID-19 pandemic-concomitant research in two countries
,”
J. Clin. Med.
9
(
10
),
3250
(
2020
).
16.
K.
Ekstrand
,
V.
Qvist
, and
A.
Thylstrup
, “
Light microscopic study of the effect of probing in occlusal surfaces
,”
Caries Res.
21
,
368
374
(
1987
).
17.
K.
Sivagurunathan
,
S. H.
Abrams
,
J.
Garcia
,
A.
Mandelis
,
B. T.
Amaechi
,
Y.
Finer
,
W. M. P.
Hellen
, and
G.
Elman
, “
Using PTR-LUM (‘The Canary System’) for in vivo detection of dental caries: Clinical trial results
,”
Caries Res.
44
,
171
247
(
2010
).
18.
J. D.
Silvertown
,
S. H.
Sivagurunathan
,
K. S.
Kennedy
,
J.
Jeon
,
J.
Mandelis
,
A.
Hellen
,
A.
Hellen
,
W.
Elman
,
G.
Ehrlich
,
R.
Chouljian
,
R.
Finer
,
Y.
Amaechi
, and
B.
T
, “
Multi-centre clinical evaluation of photothermal radiometry and luminescence correlated with international benchmarks for caries detection
,”
Open Dent. J.
11
,
636
647
(
2017
).
19.
R. J.
Jeon
,
C.
Han
,
A.
Mandelis
,
V.
Sanchez
, and
S. H.
Abrams
, “
Diagnosis of pit and fissure caries using frequency-domain infrared photothermal radiometry and modulated laser luminescence
,”
Caries Res.
38
(
6
),
497
513
(
2004
).
20.
S. H.
Abrams
, “
Improving the ways to detect cracks in teeth
,”
Dent. Today
32
(
7
),
104
107
(
2013
).
21.
R. J.
Jeon
,
A.
Mandelis
,
V.
Sanchez
, and
S. H.
Abrams
, “
Nonintrusive, noncontacting frequency-domain photothermal radiometry and luminescence depth profilometry of carious and artificial subsurface lesions in human teeth
,”
J. Biomed. Opt.
9
(
4
),
804
819
(
2004
).
22.
L.
Nicolaides
,
A.
Mandelis
, and
S. H.
Abrams
, “
Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence
,”
J. Biomed. Opt.
5
(
1
),
31
39
(
2000
).
23.
L.
Nicolaides
,
C.
Feng
,
A.
Mandelis
, and
S. H.
Abrams
, “
Quantitative dental measurements by use of simultaneous frequency-domain laser infrared radiometry and luminescence
,”
Appl. Opt.
41
(
4
),
768
777
(
2002
).
24.
A.
Matvienko
,
A.
Mandelis
,
R. J.
Jeon
, and
S. H.
Abrams
, “
Theoretical analysis of coupled diffuse-photon-density and thermal-wave field depth profiles photothermally generated in layered turbid dental structures
,”
J. Appl. Phys.
105
,
102022
(
2009
).
25.
A.
Hellen
,
A.
Matvienko
,
A.
Mandelis
,
Y.
Finer
, and
B. T.
Amaechi
, “
Optothermophysical properties of demineralized human dental enamel determined using photothermally generated diffuse photon density and thermal wave fields
,”
Appl. Opt.
49
(
36
),
6938
6951
(
2010
).
26.
J.
Kim
,
A.
Mandelis
,
S. H.
Abrams
,
J. T.
Vu
, and
B. T.
Amaechi
, “
In-vitro detection of artificial caries on vertical dental cavity walls using infrared photothermal radiometry and modulated luminescence
,”
J. Biomed. Opt.
17
(
12
),
127001
(
2012
).
27.
S. H.
Abrams
,
K. S.
Sivagurunathan
,
J. D.
Silvertown
,
B.
Wong
,
A.
Hellen
,
A.
Mandelis
,
W. M. P.
Hellen
,
G. I.
Elman
,
S. K.
Mathew
,
P. K.
Mensinkai
, and
B. T.
Amaechi
, “
Correlation with caries lesion depth of The Canary System, DIAGNOdent and ICDAS II
,”
Open Dent. J.
11
,
679
689
(
2017
).
28.
S.
Abrams
, “
Improving the way to detect cracks in teeth
,”
Dent. Today
32
(
7
),
104
106
(
2013
).
29.
N. B.
Pitts
, “
Diagnostic tools and measurements- impact on appropriate care
,”
Community Dent. Oral Epidemiol.
25
,
24
35
(
1997
).
30.
P.
Rechmann
and
J. D.
Featherstone
, “
Caries detection using light-based diagnostic tools
,”
Compend. Contin. Educ. Dent.
33
(
88
),
582
593
(
2012
).
31.
A. I. S.
Lussi
,
N.
Pitts
,
C.
Longbottom
, and
E.
Reich
, “
Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro
,”
Caries Res.
33
(
4
),
261
266
(
1999
).
32.
A. H. R.
Lussi
and
R.
Paulus
, “
DIAGNOdent: An optical method for caries detection
,”
J. Dent. Res.
83
,
C80
C83
(
2004
).
33.
E. H v. d. V. M.
Verdonschot
, “
Lasers in dentistry 2. Diagnosis of dental caries with lasers
,”
Ned. Tijdschr. Tandheelkd.
109
(
4
),
122
126
(
2002
).
34.
K. F. G.
König
and
R.
Hibst
, “
Laser-induced autofluorescence spectroscopy of dental caries
,”
Cell Mol. Biol. (Noisy-le-grand)
44
(
8
),
1293
300
(
1998
).
35.
H. M. P. A.
Alwas-Danowska
,
S.
Suliborski
, and
E. H.
Verdonschot
, “
Reliability and validity issues of laser fluorescence measurements in occlusal caries diagnosis
,”
J. Dent.
30
(
4
),
129
134
(
2002
).
36.
Á
Ástvaldsdóttir
,
S.
Tranæus
,
L.
Karlsson
, and
W.
Peter Holbrook
, “
DIAGNOdent measurements of cultures of selected oral bacteria and demineralized enamel
,”
Acta Odontol. Scand.
68
(
3
),
148
153
(
2010
).
37.
R. W. V.
Liang
,
M.
Marcus
,
P.
Burns
, and
P.
McLaughlin
, “
Multimodal imaging system for dental caries detection
,” in
Proceedings of SPIE Lasers in Dentistry
(SPIE,
2007
), p.
 XIII (64502)
.
38.
A. G. J.
Hall
, “
A review of potential new diagnostic modalities for caries lesions
,”
J. Dent. Res.
83
,
C89
94
(
2004
).
39.
M. A. B. J.
Khalife
,
J. B.
Dennison
,
P.
Yaman
, and
J. C.
Hamilton
, “
In vivo evaluation of DIAGNOdent for the quantification of occlusal dental caries
,”
Oper. Dent.
34
(
2
),
136
14
(
2009
).
40.
A. R. D.
Jablonski-Momeni
,
S.
Rolfsen
,
R.
Stoll
,
M.
Heinzel-Gutenbrunner
,
V.
Stachniss
, and
K.
Pieper
, “
Performance of laser fluorescence at tooth surface and histological section
,”
Lasers Med. Sci.
26
(
2
),
171
178
(
2011
).
41.
T. F.
Novaes
,
C. M.
Moriyama
,
M. S.
De Benedetto
 et al, “
Performance of fluorescence-based methods for detecting and quantifying smooth-surface caries lesions in primary teeth: An in vitro study
,”
Int. J. Paediatr. Dent.
26
(
1
),
13
19
(
2016
).
42.
R. J.
Jeon
,
T. D. T.
Phan
,
A.
Wu
,
G.
Kulkarni
,
S. H.
Abrams
, and
A.
Mandelis
, “
Photothermal radiometric quantitative detection of the different degrees of demineralization of dental enamel by acid etching
,” in
Proceedings of 13th International Conference on Photoacoustic & Photothermal Phenomena
,
July 5–8 2004
[J. Phys. IV France
125
, 721–723 (2005)].
43.
R. J.
Jeon
,
A.
Matvienko
,
A.
Mandelis
,
S. H.
Abrams
,
B. T.
Amaechi
, and
G.
Kulkarni
, “
Detection of interproximal demineralized lesions on human teeth in vitro using frequency-domain infrared photothermal radiometry and modulated luminescence
,”
J. BioMed. Opt.
12
(
3
),
034028
(
2007
).
44.
A.
Matvienko
,
R. J.
Jeon
,
A.
Mandelis
,
S. H.
Abrams
, and
B. T.
Amaechi
, “
Photothermal detection of incipient dental caries: Experiment and modeling
,”
Proc. SPIE
66759
,
67590J-1
67590J-10
(
2007
).
45.
R. J.
Jeon
,
A.
Hellen
,
A.
Matvienko
,
A.
Mandelis
,
S. H.
Abrams
, and
B. T.
Amaechi
, “
Experimental investigation of demineralization and remineralization of human teeth using infrared photothermal radiometry and modulated luminescence
,” in
Proceedings of SPIE
, SPIE BiOS, San Jose,
January 2008
(SPIE,
2008
), Vol. 6856, p.
68560B
.
46.
A.
Matvienko
,
A.
Mandelis
, and
S. H.
Abrams
, “
Robust multi-parameter evaluation method of optical and thermal properties of a layered tissue structure using photothermal radiometry
,”
Appl. Opt.
48
(
17
),
3193
3204
(
2009
).
47.
S.
Roointan
,
P.
Tavakolian
,
K. S.
Sivagurunathan
 et al, “
3D dental subsurface imaging using enhanced truncated correlation-photothermal coherence tomography
,”
Sci. Rep.
9
,
16788
(
2019
).
48.
J.
Garcia
,
A.
Mandelis
,
S. H.
Abrams
, and
A.
Matvienko
, “
Photothermal radiometry and modulated luminescence: Application to dental caries detection
,” in
Handbook of Biophotonics, Photonics for Health Care
, edited by
J.
Popp
,
V. V.
Tuchin
,
A.
Chiou
, and
S. H.
Heinemann
(
Wiley-VCH
,
2011
), Vol. 2, Chap. 71, p.
1047
.
49.
T.
Abrams
,
S.
Abrams
,
K.
Sivagurunathan
 et al, “
Detection of caries around resin-modified glass ionomer and compomer restorations using four different modalities in vitro
,”
Dent. J.
6
(
3
),
47
(
2018
).
50.
B. A. T.
Wong
,
K.
Sivagurunathan
,
J. D.
Silvertown
,
L. O.
Okoye
,
S. H.
Abrams
, and
B. T.
Amaechi
, “
Evaluation of inter- and intra-examiner reproducibility of The Canary System
,”
J. Dent. Res.
94
,
1479
(
2015
).
51.
K.
Sebastian
,
A.
Melnikov
,
K.
Sivagurunathan
,
X.
Guo
,
X.
Wang
, and
A.
Mandelis
, “
Non-destructive lock-in thermography of green powder metallurgy component inhomogeneities: A predictive imaging method for manufactured component flaw prevention
,”
NDT&E Int.
127
,
102603
(
2022
).
52.
A.
Melnikov
,
K.
Sivagurunathan
,
X.
Guo
,
J.
Tolev
,
A.
Mandelis
,
K.
Ly
, and
R.
Lawcock
, “
Non-destructive thermal-wave-radar imaging of manufactured green powder metallurgy compact flaws (cracks)
,”
NDT&E Int.
86
,
140
152
(
2017
).
53.
A. F.
Dayo
,
B. T.
Amaechi
,
M.
Noujeim
 et al, “
Comparison of photothermal radiometry and modulated luminescence, intraoral radiography, and cone beam computed tomography for detection of natural caries under restorations
,”
Oral Surg. Oral Med. Oral Pathol. Oral Radiol.
129
(
5
),
539
548
(
2020
).
54.
J.
Jan
,
W. Z.
Wan Bakar
,
S. M.
Mathews
,
E.
Uzamere
,
L. O.
Okoye
, and
T.
Bennett
, “
Amaechi. Clinical trial of The Canary System for proximal caries detection: A comparative study
,”
J. Biomed. Opt.
26
(
4
),
046004
(
2021
).
55.
J.
Jan
,
W. Z. W.
Bakar
,
S. M.
Mathews
,
E.
Uzamere
,
O. L.
Okoye
, and
T. B.
Amaechi
, “
Clinical trial of The Canary System for proximal caries detection: A comparative study
,”
Curr. J. Appl. Sci. Technol.
40
(
35
),
38
50
(
2021
).
56.
R. J.
Jeon
,
A.
Mandelis
, and
S. H.
Abrams
, “
Depth profilometric case studies in caries diagnostics of human teeth using modulated laser radiometry and luminescence
,”
Rev. Sci. Instrum.
74
,
380
383
(
2003
).
57.
T. E.
Abrams
,
S. H.
Abrams
,
K. S.
Sivagurunathan
,
J. D.
Silvertown
,
W. M. P.
Hellen
,
G. I.
Elman
, and
B. T.
Amaechi
, “
In vitro detection of caries around amalgam restorations using four different modalities
,”
Open Dent. J.
11
,
609
620
(
2017
).
You do not currently have access to this content.