This paper reports the onset of ferroelectricity in NiO by breaking the crystallographic symmetry with oxygen vacancies created by N doping. Nitrogen-doped NiO was grown at room temperature by RF sputtering of Ni target in Ar–O2–N2 plasma on silicon and fused silica substrates. The impact of the nitrogen doping of NiO on microstructural, optical, and electrical properties has been investigated. According to x-ray diffraction investigations, by increasing the N doping level in NiO, a transition from (002) to a (111) preferential orientation for the cubic NiO phase was observed, as well as a lattice strain relaxation, that is usually ascribed to structural defect formation in crystal. The x-ray diffraction pole figures the presence of a distorted cubic structure in NiO and supports the Rietveld refinement findings related to the strain, which pointed out that nitrogen doping fosters lattice imperfections formation. These findings were found to be in agreement with our far-infrared measurements that revealed that upon nitrogen doping a structural distortion of the NiO cubic phase appears. X-ray photoemission spectroscopy measurements reveal the presence of oxygen vacancies in the NiO film following nitrogen doping. Evidence of ferroelectricity in nitrogen-doped NiO thin films has been provided by using the well-established Sawyer–Tower method. The results reported here provide the first insights on oxygen-vacancy induced ferroelectricity in nitrogen-doped nickel oxide thin films.

1.
H.
Ryu
,
K.
Xu
,
D.
Li
,
X.
Hong
, and
W.
Zhu
, “
Empowering 2D nanoelectronics via ferroelectricity
,”
Appl. Phys. Lett.
117
,
080503
(
2020
).
2.
J.
Müller
,
T. S.
Böscke
,
U.
Schröder
,
S.
Mueller
,
D.
Braühaus
,
U.
Böttger
,
L.
Frey
, and
T.
Mikolajick
, “
Ferroelectricity in simple binary ZrO2 and HfO2
,”
Nano Lett.
12
,
4318
4323
(
2012
).
3.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
J.
Muller
,
A.
Kersch
,
U.
Schroeder
,
T.
Mikolajick
, and
C. S.
Hwang
, “
Ferroelectricity and antiferro-electricity of doped thin HfO2-based films
,”
Adv. Mater.
27
,
1811
(
2015
).
4.
M. H.
Park
,
Y. H.
Lee
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
, “
Review and perspective on ferroelectric HfO2-based thin films for memory applications
,”
MRS Commun.
8
,
795
(
2018
).
5.
M. A.
Alam
,
M.
Si
, and
P. D.
Ye
, “
A critical review of recent progress on negative capacitance field-effect transistors
,”
Appl. Phys. Lett.
114
,
090401
(
2019
).
6.
M.
Hoffmann
,
S.
Slesazeck
,
U.
Schroeder
, and
T.
Mikolajick
, “
What’s next for negative capacitance electronics?
,”
Nat. Electron.
3
,
504
(
2020
).
7.
J. C.
Wong
and
S.
Salahuddin
, “
Negative capacitance transistors
,”
Proc. IEEE
107
,
49
(
2019
).
8.
M.
Dragoman
,
M.
Aldrigo
,
D.
Dragoman
,
S.
Iordanescu
,
A.
Dinescu
, and
M.
Modreanu
, “
HfO2-based ferroelectrics applications in nanoelectronics
,”
Phys. Status Solidi RRL
15
,
2000521
(
2021
).
9.
S.
Oh
,
H.
Hwang
, and
I. K.
Yoo
, “
Ferroelectric materials for neuromorphic computing
,”
APL Mater.
7
,
091109
(
2019
).
10.
M.
Dragoman
and
D.
Dragoman
,
Atomic-scale Electronics Beyond CMOS
(
Springer
,
Cham
,
2021
), Chap. 5.
11.
E.
Carlos
,
R.
Branquinho
,
R.
Martins
,
A.
Kiazadeh
, and
E.
Fortunato
, “
Recent progress in solution-based metal oxide resistive switching devices
,”
Adv. Mater.
32
,
2004328
(
2020
).
12.
Y.
Li
,
Z.
Wang
,
R.
Midya
,
Q.
Xia
, and
J. J.
Yang
, “
Review of memristor devices in neuromorphic computing: Materials sciences and device challenges
,”
J. Phys. D: Appl. Phys.
51
,
503002
(
2018
).
13.
P. C. D.
Hobbs
,
R. B.
Laibowitz
, and
F. R.
Libsch
, “
Ni–NiO–Ni tunnel junctions for terahertz and infrared detection
,”
Appl. Opt.
44
,
6813
6822
(
2005
).
14.
E. T.
Breyer
,
H.
Mulaosmanovic
,
T.
Mikolajick
, and
S.
Slesazeck
, “
Perspective on ferroelectric, hafnium oxide based transistors for digital beyond von-Neumann computing
,”
Appl. Phys. Lett.
118
,
050501
(
2021
).
15.
M.
Si
,
A. K.
Saha
,
S.
Gao
,
G.
Qiu
,
J.
Qin
,
Y.
Duan
,
J.
Jian
,
C.
Niu
,
H.
Wang
,
W.
Wu
,
S. K.
Gupta
, and
P. D.
Ye
, “
A ferroelectric semiconductor field-effect transistor
,”
Nat. Electron.
2
,
580
586
(
2019
).
16.
Z.
Guan
,
H.
Hu
,
X.
Shen
,
P.
Xiang
,
N.
Zhong
,
J.
Chu
, and
C.
Duan
, “
Recent progress in two-dimensional ferroelectric materials
,”
Adv. Electron. Mater.
6
,
1900818
(
2020
).
17.
M.
Dragoman
,
M.
Aldrigo
,
D.
Dragoman
,
I. M.
Povey
,
S.
Iordanescu
,
A.
Dinescu
,
A.
Di Donato
, and
M.
Modreanu
, “
Multifunctionalities of 2D MoS2 self-switching diode as memristor and photodetector
,”
Physica E
126
,
114451
(
2021
).
18.
J. Y.
Kim
,
M. J.
Choi
, and
H. W.
Jang
, “
Ferroelctric field transistors: Progress and perspectives
,”
APL Mater.
9
,
021102
(
2021
).
19.
F.
Gillot
,
J.
Oró-Solé
, and
M. R.
Palacín
, “
Nickel nitride as negative electrode material for lithium ion batteries
,”
J. Mater. Chem.
21
,
9997
10002
(
2011
).
20.
S.
Sriram
,
A.
Thayumanavan
, and
K.
Ravichandran
, “
Influence of nitrogen doping on properties of NiO films
,”
Surf. Eng.
32
,
207
211
(
2016
).
21.
A. L.
Patterson
, “
The Scherrer formula for x-ray particle size determination
,”
Phys. Rev.
56
,
978
982
(
1939
).
22.
P.
Zhou
,
B.
Li
,
Z.
Fang
,
W.
Zhou
,
M.
Zhang
,
W.
Hu
,
T.
Chen
,
Z.
Xiao
, and
S.
Yang
, “
Nitrogen-doped nickel oxide as hole transport layer for high-efficiency inverted planar perovskite solar cells
,”
Solar RRL
3
,
1900164
(
2019
).
23.
D.
Nath
,
F.
Singh
, and
R.
Das
, “
X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles—A comparative study
,”
Mater. Chem. Phys.
239
,
122021
(
2020
).
24.
H. M.
Rietveld
, “
A profile refinement method for nuclear and magnetic structures
,”
J. Appl. Crystallogr.
2
,
65
71
(
1969
).
25.
L.
Lutterotti
, “
Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction
,”
Nucl. Instrum. Methods Phys. Res. B
268
,
334
340
(
2010
).
26.
V. K.
Pecharsky
and
P. Y.
Zavalij
,
Fundamentals of Powder Diffraction and Structural Characterization of Materials
, 2nd ed. (
Springer
,
New York
,
2009
).
27.
C.
Romanitan
,
I. V.
Tudose
,
K.
Mouratis
,
M. C.
Popescu
,
C.
Pachiu
,
S.
Couris
,
E.
Koudoumas
, and
M.
Suchea
, “
Structural investigations in electrochromic vanadium pentoxide thin films
,”
Phys. Status Solidi A
2100431
(Published online
2022
).
28.
K.
Bowen
and
B.
Tanner
,
High Resolution X-Ray Diffractometer and Topography
(
Taylor & Francis
,
London
,
1998
).
29.
D. J.
Lockwood
,
G.
Yu
, and
N. L.
Rowell
, “
Oblique incidence infrared reflectance spectroscopy of phonons in cubic MgO, MnO, and NiO
,”
Infrared Phys. Technol.
109
,
103405
(
2020
).
30.
M. C.
Biesinger
,
B. P.
Payne
,
L. W. M.
Lau
,
A.
Gerson
, and
R. St. C.
Smart
, “
X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems
,”
Surf. Interface Anal.
41
,
324
332
(
2009
).
31.
Y.
Gao
,
Y.
Masuda
, and
K.
Koumoto
, “
Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution
,”
Langmuir
20
,
3188
3194
(
2004
).
32.
J.
Keraudy
,
A.
Ferrec
,
M.
Richard-Plouet
,
J.
Hamon
,
A.
Goullet
, and
P.-Y.
Jouan
, “
Nitrogen doping on NiO by reactive magnetron sputtering: A new pathway to dynamically tune the optical and electrical properties
,”
Appl. Surf. Sci.
409
,
77
84
(
2017
).
33.
St.
Uhlenbrock
,
C.
Scharfschwerdt
,
M.
Neumann
,
G.
Illing
, and
H.-J.
Freund
, “
The influence of defects on the Ni 2p and O 1s XPS of NiO
,”
J. Phys. Condens. Matter
4
,
7973
(
1992
).
34.
S.
Park
,
H.-S.
Ahn
,
C.-K.
Lee
,
H.
Kim
,
H.
Jin
,
H.-S.
Lee
,
S.
Seo
,
J.
Yu
, and
S.
Han
, “
Interaction and ordering of vacancy defects in NiO
,”
Phys. Rev. B
77
,
134103
(
2008
).
35.
C. B.
Sawyer
and
C. H.
Tower
, “
Rochelle salt as dielectric
,”
Phys. Rev.
35
,
269
273
(
1930
).
36.
X.
Qiu
,
L.
Holländer
,
W.
Wirges
,
R.
Gerhard
, and
H. C.
Basso
, “
Direct hysteresis measurements on ferroelectric films by means of a modified Sawyer–Tower circuit
,”
J. Appl. Phys.
113
,
224106
(
2013
).
37.
J. J.
Lee
and
S. B.
Desu
, “
The shifting of P-E hysteresis loop by the asymmetric contacts on ferroelectric PZT thin films
,”
Ferroelectr. Lett. Sect.
20
,
27
34
(
1995
).
38.
E.
Sapper
,
R.
Dittmer
,
D.
Damjanovic
,
E.
Erdem
,
D. J.
Keeble
,
W.
Jo
,
T.
Granzow
, and
J.
Rödel
, “
Aging in the relaxor and ferroelectric state of Fe-doped (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 piezoelectric ceramics
,”
J. Appl. Phys.
116
,
104102
(
2014
).
39.
L.
Jin
,
F.
Li
, and
S.
Zhang
, “
Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures
,”
J. Am. Ceram. Soc.
97
(
1
),
1
27
(
2014
).
40.
T.
Shimizu
,
T.
Yokouchi
,
T.
Oikawa
,
T.
Shiraishi
,
T.
Kiguchi
,
A.
Akama
,
T. J.
Konno
,
A.
Gruverman
, and
H.
Funakubo
, “
Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films
,”
Appl. Phys. Lett.
106
,
112904
(
2015
).
41.
L. J.
Sinnamon
,
R. M.
Bowman
, and
J. M.
Gregg
, “
Thickness-induced stabilization of ferroelectricity in SrRuO3/Ba0.5Sr0.5TiO3/Au thin film capacitors
,”
Appl. Phys. Lett.
81
,
889
(
2002
).
42.
T.
Shimizu
, “
Ferroelectricity in HfO2 and related ferroelectrics
,”
J. Ceram. Soc. Jpn.
126
,
667
(
2018
).
43.
M. D.
Glinchuk
,
A. N.
Morozovska
, and
L. P.
Yurchenko
, “
Origin of ferroelectricity and multiferroicity in binary oxide thin films
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Control
68
,
273
278
(
2021
).
44.
Y.
Zhou
,
Y. K.
Zhang
,
Q.
Yang
,
J.
Jiang
,
P.
fan
,
M.
Liao
, and
Y. C.
Zhou
, “
The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle
,”
Comput. Mater. Sci.
167
,
143
150
(
2019
).
45.
J.
Zhu
,
J.-W.
Lee
,
H.
Lee
,
L.
Xie
,
X.
Pan
,
R. A.
De Souza
,
C.-B.
Eom
, and
S. S.
Nonnenmann
, “
Probing vacancy behavior across complex oxide heterointerfaces
,”
Sci. Adv.
5
,
8467
(
2019
).
46.
R.
He
,
J. L.
Lin
,
Q.
Liu
,
Z.
Liao
,
L.
Shui
,
Z. J.
Wang
,
Z.
Zhong
, and
R.-W.
Li
, “
Emergent ferroelectricity in otherwise nonferroelectric oxides by oxygen vacancy design at heterointerfaces
,”
ACS Appl. Mater. Interfaces
12
,
45602
45610
(
2020
).
47.
D. S.
Park1
,
M.
Hadad
,
L. M.
Riemer
,
R.
Ignatans
,
D.
Spirito
,
V.
Esposito
,
V.
Tileli
,
N.
Gauquelin
,
D.
Chezganov
,
D.
Jannis
,
J.
Verbeeck
,
S.
Gorfman
,
N.
Pryds
,
P.
Muralt
, and
D.
Damjanovic
, “
Induced giant piezoelectricity in centrosymmetric oxides
,”
Science
375
,
653
657
(
2022
).
48.
M.-M.
Yang
,
Z.-D.
Luo
,
Z.
Mi
,
J.
Zhao
,
S.
Pei E
, and
M.
Alexe
, “
Piezoelectric and pyroelectric effects induced by interface polar symmetry
,”
Nature
584
,
377
(
2020
).
You do not currently have access to this content.