The possibility of using siligraphene sheets to detect volatile organic biomarkers in the exhaled breath of humans with COVID-19 is studied. Heptanal, octanal, and nonanal are identified as the prominent biomarkers of COVID-19. Adsorption of these molecules on SiC and SiC7 sheets is examined by density functional theory. The adsorption energies indicate that the considered sheets could be proper materials to use as reusable sensors. SiC and SiC7 exhibit semiconductor properties. The energy bandgap of SiC7 reduces more drastically than that of SiC with heptanal, octanal, and nonanal adsorption. Thus, the electronic properties of SiC7 are sensitive to the adsorption of the considered molecules. It is also shown that physisorption of the water molecule has no considerable effect on the bandgap of SiC7. Thus, SiC7 is a suitable sensor for use in humid conditions like an exhaled breath of humans to diagnose COVID-19.

1.
G.
Giovannini
,
H.
Haick
, and
D.
Garoli
,
ACS Sens.
6
,
1408
(
2021
).
2.
M.
Sreepadmanabh
,
A. K.
Sahu
, and
A.
Chande
,
J. Biosci.
45
,
148
(
2020
).
3.
A.
Crozier
,
S.
Rajan
,
I.
Buchan
, and
M.
McKee
,
Br. Med. J.
372
,
n208
(
2021
).
4.
S.
Grassin-Delyle
,
C.
Roquencourt
,
P.
Moine
,
G.
Saffroy
,
S.
Carn
,
N.
Heming
,
J.
Fleuriet
,
H.
Salvator
,
E.
Naline
,
L.-J.
Couderc
 et al,
eBioMedicine
63
,
103154
(
2021
). Epub 2020 Dec 4.
5.
D. M.
Ruszkiewicz
,
D.
Sanders
,
R.
O’Brien
,
F.
Hempel
,
M. J.
Reed
,
A. C.
Riepe
,
K.
Bailie
,
E.
Brodrick
,
K.
Darnley
,
R.
Ellerkmann
 et al,
eClinicalMedicine
29
,
100609
(
2020
).
6.
B.
Shan
,
Y. Y.
Broza
,
W.
Li
,
Y.
Wang
,
S.
Wu
,
Z.
Liu
,
J.
Wang
,
S.
Gui
,
L.
Wang
,
Z.
Zhang
 et al,
ACS Nano
14
,
12125
(
2020
).
7.
A. Z.
Berna
,
E. H.
Akaho
,
R. M.
Harris
,
M.
Congdon
,
E.
Korn
,
S.
Neher
,
M.
M’Farrej
,
J.
Burns
, and
A. R.
Odom John
,
ACS Infect. Dis.
7
,
2596
(
2021
).
8.
J.
Wang
,
Q.
Zhou
,
S.
Peng
,
L.
Xu
, and
W.
Zeng
,
Front. Chem.
8
,
339
(
2020
).
9.
M.
Holzinger
,
A.
Le Goff
, and
S.
Cosnier
,
Front. Chem.
2
,
63
(
2014
).
10.
M.
Javaid
,
A.
Haleem
,
R.
Pratap Singh
,
S.
Rab
, and
R.
Suman
,
Sensors Int.
2
,
100130
(
2021
).
11.
Y.
Wang
and
J. T. W.
Yeow
,
Nanomater. Chem. Sens. Technol.
2009
,
493904
.
12.
K.
Shavanova
,
Y.
Bakakina
,
I.
Burkova
,
I.
Shtepliuk
,
R.
Viter
,
A.
Ubelis
,
V.
Beni
,
N.
Starodub
,
R.
Yakimova
, and
V.
Khranovskyy
,
Sensors
16
,
223
(
2016
).
13.
Y.
Zeng
,
S.
Lin
,
D.
Gu
, and
X.
Li
,
Nanomaterials
8
,
851
(
2018
).
14.
S.
Dharani
,
V.
Nagarajan
, and
R.
Chandiramouli
,
J. Mol. Graphics Modell.
91
,
22
(
2019
).
15.
R.
Majid
and
M.
Nadafan
,
J. Comput. Electron.
20
,
1930
(
2021
).
16.
P. C.
Sruthy
,
V.
Nagarajan
, and
R.
Chandiramouli
,
J. Mol. Graphics Modell.
97
,
107566
(
2020
).
17.
A.
Zhu
and
X.
Luo
,
J. Phys. Chem. B
126
,
151
(
2022
).
18.
S.
Aghaei
,
A.
Aasi
,
S.
Farhangdoust
, and
B.
Panchapakesan
,
Appl. Surf. Sci.
536
,
147756
(
2021
).
19.
N. L.
Lukman Hekiem
,
A. A.
Md Ralib
,
M. A.
Mat Hattar
,
F. B.
Ahmad
,
A. N.
Nordin
,
R. A.
Rahim
, and
N. F.
Za’bah
,
Sens. Actuators, A
329
,
112792
(
2021
).
20.
U.
Srimathi
,
V.
Nagarajan
, and
R.
Chandiramouli
,
Appl. Surf. Sci.
475
,
990
(
2019
).
21.
R.
Torrente-Rodríguez
,
H.
Lukas
,
J.
Tu
,
J.
Min
,
Y.
Yang
,
C.
Xu
,
H.
Rossiter
, and
W.
Gao
,
Matter
3
,
1981
(
2020
).
22.
J.
Sengupta
and
C. M.
Hussain
,
Carbon Trends
2
,
100011
(
2021
).
23.
W. Y.
Lim
,
B. L.
Lan
, and
N.
Ramakrishnan
,
Biosensors
11
,
434
(
2021
).
24.
O.
Leenaerts
,
B.
Partoens
, and
F. M.
Peeters
,
Phys. Rev. B
77
,
125416
(
2008
).
25.
Y.
Dan
,
Y.
Lu
,
N. J.
Kybert
,
Z.
Luo
, and
A. T. C.
Johnson
,
Nano Lett.
9
,
1472
(
2009
).
26.
F.
Niu
,
Z.-W.
Shao
,
H.
Gao
,
L.-M.
Tao
, and
Y.
Ding
,
Sens. Actuators, B
328
,
129005
(
2021
).
27.
S. S.
Varghese
,
S.
Swaminathan
,
K. K.
Singh
, and
V.
Mittal
,
Comp. Condens. Matter
9
,
40
(
2016
).
28.
X.-Y.
Liang
,
N.
Ding
,
S.-P.
Ng
, and
C.-M. L.
Wu
,
Appl. Surf. Sci.
411
,
11
(
2017
).
29.
B.
Wanno
and
C.
Tabtimsai
,
Superlattices Microstruct.
67
,
110
(
2014
).
30.
Z.
Shi
,
Z.
Zhang
,
A.
Kutana
, and
B. I.
Yakobson
,
ACS Nano
9
,
9802
(
2015
).
31.
J.
Zhang
,
J.
Ren
,
H.
Fu
,
Z.
Ding
,
H.
Li
, and
S.
Meng
,
Sci. China: Phys., Mech. Astron.
58
,
106801
(
2015
).
32.
Y.
Li
,
F.
Li
,
Z.
Zhou
, and
Z.
Chen
,
J. Am. Chem. Soc.
133
,
900
(
2010
).
33.
Y.
Ding
and
Y.
Wang
,
J. Phys. Chem. C
118
,
4509
(
2014
).
34.
P.
Li
,
R.
Zhou
, and
X. C.
Zeng
,
Nanoscale
6
,
11685
(
2014
).
35.
S.
Chabi
and
K.
Kadel
,
Nanomaterials
10
,
2226
(
2020
).
36.
L. J.
Zhou
,
Y. F.
Zhang
, and
L. M.
Wu
,
Nano. Lett.
13
,
5431
(
2013
).
37.
H.
Dong
,
L.
Zhou
,
T.
Frauenheim
,
T.
Hou
,
S.-T.
Lee
, and
Y.
Li
,
Nanoscale
8
,
6994
(
2016
).
38.
E.
Bekaroglu
,
M.
Topsakal
,
S.
Cahangirov
, and
S.
Ciraci
,
Phys. Rev. B
81
,
075433
(
2010
).
39.
L. G.
Arellano
,
F.
de Santiago
,
A.
Miranda
,
F.
Salazar
,
A.
Trejo
,
L. A.
Perez
, and
M.
Cruz-Irisson
,
Int. J. Hydrogen Eng.
46
,
20266
(
2021
).
40.
T.
Ozaki
,
H.
Kino
,
J.
Yu
,
M. J.
Han
,
N.
Kobayashi
,
M.
Ohfuti
,
F.
Ishii
 et al, see http://www.openmx-square.org for User’s manual of OpenMX version 3.8.
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
42.
S. J.
Grimme
,
Comput. Chem.
27
,
1787
(
2006
).
43.
R. S. J.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
44.
G.
Henkelman
and
H.
Jonsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
45.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
46.
B.
Mortezavi
,
N.
Silani
,
E. V.
Podryabinkin
,
T.
Rabczuk
,
X.
Zhuang
, and
A. V.
Shapeev
,
Adv. Mater.
33
,
2102807
(
2021
).
47.
B.
Mortazavi
,
E. V.
Podryabinkin
,
I. S.
Novikov
,
T.
Rabczuk
,
X.
Zhuang
, and
A. V.
Shapeev
,
Comp. Phys. Commun.
258
,
107583
(
2021
).
You do not currently have access to this content.