Construction of van der Waals heterostructures (vdWHs) from layered materials may form new types of optoelectronic devices with better performance compared to individual layers. Here, we investigate theoretically the structural stability, electronic properties, charge-transport mechanisms, and optical properties of two-dimensional (2D) MoSi2N4/Cs3Bi2I9 vdWHs by using the first-principles calculations. Our results demonstrate that the 2D MoSi2N4/Cs3Bi2I9 vdWHs possess a direct bandgap and type-II band alignment due to the built-in electric field induced by the electron transfer from MoSi2N4 to Cs3Bi2I9 layer, which can prevent photoinduced electrons and holes from recombination and thus enhance the carrier lifetime. Furthermore, the optical absorption of the heterostructure is enhanced in the visible and ultraviolet region, and its electronic property is tunable under in-plane strains with a clear metal–semiconductor transition. Finally, we explore more A3B2X9/MA2Z4 vdWHs with A = Cs; B = In, Sb, Bi; and X = Cl, Br, I in A3B2X9 and M = Cr, Mo, Ti; A = Si; and Z = N, P in MA2Z4, and we find all three types of band alignments (type-I, type-II, and type-III). Our study provides a comprehensive theoretical understanding of the electronic and optical properties of perovskite-based heterostructures and indicates its potential applications in optoelectronic devices.

1.
H. J.
Snaith
, “
Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells
,”
J. Phys. Chem. Lett.
4
(
21
),
3623
3630
(
2013
).
2.
J.
Burschka
,
N.
Pellet
,
S.-J.
Moon
,
R.
Humphry-Baker
,
P.
Gao
,
M. K.
Nazeeruddin
, and
M.
Grätzel
, “
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
,”
Nature
499
(
7458
),
316
319
(
2013
).
3.
I.
Mesquita
,
L.
Andrade
, and
A.
Mendes
, “
Perovskite solar cells: Materials, configurations and stability
,”
Renew. Sustain. Energy Rev.
82
,
2471
2489
(
2018
).
4.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
, “
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,”
J. Am. Chem. Soc.
131
(
17
),
6050
6051
(
2009
).
5.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
, “
Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut
,”
Nano Lett.
15
(
6
),
3692
3696
(
2015
).
6.
J.
Song
,
J.
Li
,
X.
Li
,
L.
Xu
,
Y.
Dong
, and
H.
Zeng
, “
Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)
,”
Adv. Mater.
27
(
44
),
7162
7167
(
2015
).
7.
T.
Guner
and
M. M.
Demir
, “
A review on halide perovskites as color conversion layers in white light emitting diode applications
,”
Phys. Stat. Solidi A
215
(
13
),
1800120
(
2018
).
8.
X.
Li
,
F.
Cao
,
D.
Yu
,
J.
Chen
,
Z.
Sun
,
Y.
Shen
,
Y.
Zhu
,
L.
Wang
,
Y.
Wei
,
Y.
Wu
, and
H.
Zeng
, “
All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications
,”
Small
13
(
9
),
1603996
(
2017
).
9.
X.
He
,
Y.
Qiu
, and
S.
Yang
, “
Fully-inorganic trihalide perovskite nanocrystals: A new research frontier of optoelectronic materials
,”
Adv. Mater.
29
(
32
),
1700775
(
2017
).
10.
H.
Huang
,
L.
Polavarapu
,
J. A.
Sichert
,
A. S.
Susha
,
A. S.
Urban
, and
A. L.
Rogach
, “
Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications
,”
NPG Asia Mater.
8
(
11
),
e328
(
2016
).
11.
J. H.
Noh
,
S. H.
Im
,
J. H.
Heo
,
T. N.
Mandal
, and
S. I.
Seok
, “
Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells
,”
Nano Lett.
13
(
4
),
1764
1769
(
2013
).
12.
W.-J.
Yin
,
J.-H.
Yang
,
J.
Kang
,
Y.
Yan
, and
S.-H.
Wei
, “
Halide perovskite materials for solar cells: A theoretical review
,”
J. Mater. Chem. A
3
(
17
),
8926
8942
(
2015
).
13.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
, “
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
,”
Science
342
(
6156
),
341
344
(
2013
).
14.
Q.
Dong
,
Y.
Fang
,
Y.
Shao
,
P.
Mulligan
,
J.
Qiu
,
L.
Cao
, and
J.
Huang
,
Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals
.
Science
2015
,
347
(
6225
),
967
970
.
15.
M.
Liu
,
M. B.
Johnston
, and
H. J.
Snaith
, “
Efficient planar heterojunction perovskite solar cells by vapour deposition
,”
Nature
501
(
7467
),
395
398
(
2013
).
16.
O.
Malinkiewicz
,
A.
Yella
,
Y. H.
Lee
,
G. M.
Espallargas
,
M.
Graetzel
,
M. K.
Nazeeruddin
, and
H. J.
Bolink
, “
Perovskite solar cells employing organic charge-transport layers
,”
Nat. Photonics
8
(
2
),
128
132
(
2014
).
17.
C.-W.
Chen
,
H.-W.
Kang
,
S.-Y.
Hsiao
,
P.-F.
Yang
,
K.-M.
Chiang
, and
H.-W.
Lin
, “
Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition
,”
Adv. Mater.
26
(
38
),
6647
6652
(
2014
).
18.
F.
Wang
,
H.
Yu
,
H.
Xu
, and
N.
Zhao
, “
HPbI3: A new precursor compound for highly efficient solution-processed perovskite solar cells
,”
Adv. Funct. Mater.
25
(
7
),
1120
1126
(
2015
).
19.
T.
Singh
and
T.
Miyasaka
, “
High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions
,”
Chem. Commun.
52
(
26
),
4784
4787
(
2016
).
20.
S.
Govinda
,
B. P.
Kore
,
M.
Bokdam
,
P.
Mahale
,
A.
Kumar
,
S.
Pal
,
B.
Bhattacharyya
,
J.
Lahnsteiner
,
G.
Kresse
,
C.
Franchini
,
A.
Pandey
, and
D. D.
Sarma
, “
Behavior of methylammonium dipoles in MAPbX3 (X = Br and I)
,”
J. Phys. Chem. Lett.
8
(
17
),
4113
4121
(
2017
).
21.
N. K.
Noel
,
S. D.
Stranks
,
A.
Abate
,
C.
Wehrenfennig
,
S.
Guarnera
,
A.-A.
Haghighirad
,
A.
Sadhanala
,
G. E.
Eperon
,
S. K.
Pathak
,
M. B.
Johnston
,
A.
Petrozza
,
L. M.
Herz
, and
H. J.
Snaith
, “
Lead-free organic-inorganic tin halide perovskites for photovoltaic applications
,”
Energy Environ. Sci.
7
(
9
),
3061
3068
(
2014
).
22.
K.
Qin
,
B.
Dong
, and
S.
Wang
, “
Improving the stability of metal halide perovskite solar cells from material to structure
,”
J. Energy Chem.
33
,
90
99
(
2019
).
23.
M.
Kulbak
,
S.
Gupta
,
N.
Kedem
,
I.
Levine
,
T.
Bendikov
,
G.
Hodes
, and
D.
Cahen
, “
Cesium enhances long-term stability of lead bromide perovskite-based solar cells
,”
J. Phys. Chem. Lett.
7
(
1
),
167
172
(
2016
).
24.
J.
Liang
,
G.
Zhu
,
C.
Wang
,
P.
Zhao
,
Y.
Wang
,
Y.
Hu
,
L.
Ma
,
Z.
Tie
,
J.
Liu
, and
Z.
Jin
, “
An All-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging
,”
Nano Energy
52
,
239
245
(
2018
).
25.
J.
Ren
,
T.
Li
,
X.
Zhou
,
X.
Dong
,
A. V.
Shorokhov
,
M. B.
Semenov
,
V. D.
Krevchik
, and
Y.
Wang
, “
Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications
,”
Chem. Eng. J.
358
,
30
39
(
2019
).
26.
M. I.
Asghar
,
J.
Zhang
,
H.
Wang
, and
P. D.
Lund
, “
Device stability of perovskite solar cells—A review
,”
Renew. Sustain. Energy Rev.
77
,
131
146
(
2017
).
27.
P.
Banerjee
,
N. S.
Kumar
,
K. C. B.
Naidu
,
A.
Franco
, and
R.
Dachepalli
, “
Stability of 2D and 3D perovskites due to inhibition of light-induced decomposition
,”
J. Electron. Mater.
49
(
12
),
7072
7084
(
2020
).
28.
B.
Saparov
,
F.
Hong
,
J.-P.
Sun
,
H.-S.
Duan
,
W.
Meng
,
S.
Cameron
,
I. G.
Hill
,
Y.
Yan
, and
D. B.
Mitzi
, “
Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor
,”
Chem. Mater.
27
(
16
),
5622
5632
(
2015
).
29.
A. J.
Lehner
,
D. H.
Fabini
,
H. A.
Evans
,
C.-A.
Hébert
,
S. R.
Smock
,
J.
Hu
,
H.
Wang
,
J. W.
Zwanziger
,
M. L.
Chabinyc
, and
R.
Seshadri
, “
Crystal and electronic structures of complex bismuth iodides A3Bi2I9 (A = K, Rb, Cs) related to perovskite: Aiding the rational design of photovoltaics
,”
Chem. Mater.
27
(
20
),
7137
7148
(
2015
).
30.
Z.
Ma
,
S.
Peng
,
Y.
Wu
,
X.
Fang
,
X.
Chen
,
X.
Jia
,
K.
Zhang
,
N.
Yuan
,
J.
Ding
, and
N.
Dai
, “
Air-Stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties
,”
Phys. B Condens. Matter
526
,
136
142
(
2017
).
31.
B.-W.
Park
,
B.
Philippe
,
X.
Zhang
,
H.
Rensmo
,
G.
Boschloo
, and
E. M. J.
Johansson
, “
Bismuth based hybrid perovskites A3Bi2I9(A: Methylammonium or cesium) for solar cell application
,”
Adv. Mater.
27
(
43
),
6806
6813
(
2015
).
32.
B.
Ghosh
,
B.
Wu
,
H. K.
Mulmudi
,
C.
Guet
,
K.
Weber
,
T. C.
Sum
,
S.
Mhaisalkar
, and
N.
Mathews
, “
Limitations of Cs3Bi2I9 as lead-free photovoltaic absorber materials
,”
ACS Appl. Mater. Interfaces
10
(
41
),
35000
35007
(
2018
).
33.
A.
Nilă
,
M.
Baibarac
,
A.
Matea
,
R.
Mitran
, and
I.
Baltog
, “
Exciton-phonon interactions in the Cs3Bi2I9 crystal structure revealed by Raman spectroscopic studies
,”
Phys. Status Solidi B
254
(
4
),
1552805
(
2017
).
34.
K.-H.
Hong
,
J.
Kim
,
L.
Debbichi
,
H.
Kim
, and
S. H.
Im
, “
Band gap engineering of Cs3Bi2I9 perovskites with trivalent atoms using a dual metal cation
,”
J. Phys. Chem. C
121
(
1
),
969
974
(
2017
).
35.
L.
Liang
and
P.
Gao
, “
Lead-Free hybrid perovskite absorbers for viable application: Can we eat the cake and have it too?
,”
Adv. Sci.
5
(
2
),
1700331
(
2018
).
36.
T.
Singh
,
A.
Kulkarni
,
M.
Ikegami
, and
T.
Miyasaka
, “
Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications
,”
ACS Appl. Mater. Interfaces
8
(
23
),
14542
14547
(
2016
).
37.
K. M.
McCall
,
C. C.
Stoumpos
,
O. Y.
Kontsevoi
,
G. C. B.
Alexander
,
B. W.
Wessels
, and
M. G.
Kanatzidis
, “
From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: Dimensional expansion induces a direct band Gap but enhances electron-phonon coupling
,”
Chem. Mater.
31
(
7
),
2644
2650
(
2019
).
38.
C.
Tan
,
X.
Cao
,
X.-J.
Wu
,
Q.
He
,
J.
Yang
,
X.
Zhang
,
J.
Chen
,
W.
Zhao
,
S.
Han
,
G.-H.
Nam
,
M.
Sindoro
, and
H.
Zhang
, “
Recent advances in ultrathin two-dimensional nanomaterials
,”
Chem. Rev.
117
(
9
),
6225
6331
(
2017
).
39.
B.
Ghosh
,
S.
Chakraborty
,
H.
Wei
,
C.
Guet
,
S.
Li
,
S.
Mhaisalkar
, and
N.
Mathews
, “
Poor photovoltaic performance of Cs3Bi2I9: An insight through first-principles calculations
,”
J. Phys. Chem. C
121
(
32
),
17062
17067
(
2017
).
40.
A.
Sarkar
,
P.
Acharyya
,
R.
Sasmal
,
P.
Pal
,
S. S.
Agasti
, and
K.
Biswas
, “
Synthesis of ultrathin few-layer 2D nanoplates of halide perovskite Cs3Bi2I9 and single-nanoplate super-resolved fluorescence microscopy
,”
Inorg. Chem.
57
(
24
),
15558
15565
(
2018
).
41.
R.
Waykar
,
A.
Bhorde
,
S.
Nair
,
S.
Pandharkar
,
B.
Gabhale
,
R.
Aher
,
S.
Rondiya
,
A.
Waghmare
,
V.
Doiphode
,
A.
Punde
,
P.
Vairale
,
M.
Prasad
, and
S.
Jadkar
, “
Environmentally stable lead-free cesium bismuth iodide (Cs3Bi2I9) perovskite: Synthesis to solar cell application
,”
J. Phys. Chem. Solids
146
,
109608
(
2020
).
42.
M. T.
Islam
,
M. R.
Jani
,
K. M.
Shorowordi
,
Z.
Hoque
,
A. M.
Gokcek
,
V.
Vattipally
,
S. S.
Nishat
, and
S.
Ahmed
, “
Numerical simulation studies of Cs3Bi2I9 perovskite solar device with optimal selection of electron and hole transport layers
,”
Optik
231
,
166417
(
2021
).
43.
F.
Bai
,
Y.
Hu
,
Y.
Hu
,
T.
Qiu
,
X.
Miao
, and
S.
Zhang
, “
Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells
,”
Sol. Energy Mater. Sol. Cells
184
,
15
21
(
2018
).
44.
B.-M.
Bresolin
,
C.
Günnemann
,
D. W.
Bahnemann
, and
M.
Sillanpää
, “
Pb-Free Cs3Bi2I9 perovskite as a visible-light-active photocatalyst for organic pollutant degradation
,”
Nanomaterials
10
(
4
),
763
(
2020
).
45.
Z.
Qi
,
X.
Fu
,
T.
Yang
,
D.
Li
,
P.
Fan
,
H.
Li
,
F.
Jiang
,
L.
Li
,
Z.
Luo
,
X.
Zhuang
, and
A.
Pan
, “
Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications
,”
Nano Res.
12
(
8
),
1894
1899
(
2019
).
46.
L.
Peedikakkandy
,
S.
Chatterjee
, and
A. J.
Pal
, “
Bandgap engineering and efficient conversion of a ternary perovskite (Cs3Bi2I9) to a double perovskite (Cs2NaBiI6) with the aid of alkali metal sulfide
,”
J. Phys. Chem. C
124
(
20
),
10878
10886
(
2020
).
47.
Y.
Li
,
Z.
Shi
,
W.
Liang
,
J.
Ma
,
X.
Chen
,
D.
Wu
,
Y.
Tian
,
X.
Li
,
C.
Shan
, and
X.
Fang
, “
Recent advances toward environment-friendly photodetectors based on lead-free metal halide perovskites and perovskite derivatives
,”
Mater. Horiz.
8
(
5
),
1367
1389
(
2021
).
48.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
(
7459
),
419
425
(
2013
).
49.
A.
Bafekry
and
M.
Neek-Amal
, “
Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field
,”
Phys. Rev. B
101
(
8
),
085417
(
2020
).
50.
M. D.
Tran
,
H.
Kim
,
J. S.
Kim
,
M. H.
Doan
,
T. K.
Chau
,
Q. A.
Vu
,
J.-H.
Kim
, and
Y. H.
Lee
, “
Two-terminal multibit optical memory via van der Waals heterostructure
,”
Adv. Mater.
31
(
7
),
1807075
(
2019
).
51.
M.
Yao
,
T.
Wu
,
B.
Liu
,
J.
Li
, and
M.
Long
, “
First principle study on interfacial interaction of black phosphorus and CsBr VdW heterostructure
,”
Phys. Lett. A
384
(
25
),
126614
(
2020
).
52.
Q.-H.
Li
,
Y.-F.
Ding
,
P.-B.
He
,
R.
Zeng
,
Q.
Wan
, and
M.-Q.
Cai
, “
Transition of the type of band alignments for all-inorganic perovskite van der Waals heterostructures CsSnBr3/WS2(1−x)Se2x
,”
J. Phys. Chem. Lett.
12
(
15
),
3809
3818
(
2021
).
53.
C.-S.
Liao
,
Q.-Q.
Zhao
,
Y.-Q.
Zhao
,
Z.-L.
Yu
,
H.
Zhou
,
P.-B.
He
,
J.-L.
Yang
, and
M.-Q.
Cai
, “
First-Principles investigations of electronic and optical properties in the MoS2/CsPbBr3 heterostructure
,”
J. Phys. Chem. Solids
135
,
109060
(
2019
).
54.
Y.-Q.
Zhao
,
Y.
Xu
,
D.-F.
Zou
,
J.-N.
Wang
,
G.-F.
Xie
,
B.
Liu
,
M.-Q.
Cai
, and
S.-L.
Jiang
, “
First-principles study on photovoltaic properties of 2D Cs2PbI4-black phosphorus heterojunctions
,”
J. Phys. Condens. Matter
32
(
19
),
195501
(
2020
).
55.
J.
He
,
J.
Su
,
Z.
Lin
,
S.
Zhang
,
Y.
Qin
,
J.
Zhang
,
J.
Chang
, and
Y.
Hao
, “
Theoretical studies of electronic and optical behaviors of all-inorganic CsPbI3and two-dimensional MS2(M = Mo, W) heterostructures
,”
J. Phys. Chem. C
123
(
12
),
7158
7165
(
2019
).
56.
Y.-L.
Hong
,
Z.
Liu
,
L.
Wang
,
T.
Zhou
,
W.
Ma
,
C.
Xu
,
S.
Feng
,
L.
Chen
,
M.-L.
Chen
,
D.-M.
Sun
,
X.-Q.
Chen
,
H.-M.
Cheng
, and
W.
Ren
, “
Chemical vapor deposition of layered two-dimensional MoSi2N4 materials
,”
Science
369
(
6504
),
670
674
(
2020
).
57.
A.
Bafekry
,
M.
Faraji
,
D. M.
Hoat
,
M. M.
Fadlallah
,
M.
Shahrokhi
,
F.
Shojaei
,
D.
Gogova
, and
M.
Ghergherehchi
, “MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic, optical, and photocatalytic properties,” arXiv:2009.04267 Cond-Mat Physicsphysics (
2020
).
58.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
59.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
60.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
61.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
62.
B.
Chabot
and
E.
Parthi
, “Cs3Sb2I9 and Cs3B2I9 with the hexagonal Cs3Cr2Cl9 structure Type. 4,” Acta Crystallographica Section B: Structural Crystallography and Crystal Chem. 34(2): 645–648 (1978).
63.
M.
Farmanbar
and
G.
Brocks
, “
First-principles study of van der Waals interactions and lattice mismatch at MoS2/metal interfaces
,”
Phys. Rev. B
93
(
8
),
085304
(
2016
).
64.
H.
Zhong
,
W.
Xiong
,
P.
Lv
,
J.
Yu
, and
S.
Yuan
, “
Strain-induced semiconductor to metal transition in MA2Z4 bilayers (M = Ti, Cr, Mo ; A = Si ; Z = N, P)
,”
Phys. Rev. B
103
(
8
),
085124
(
2021
).
65.
B.
Gao
,
J.-R.
Zhang
,
L.
Chen
,
J.
Guo
,
S.
Shen
,
C.-T.
Au
,
S.-F.
Yin
, and
M.-Q.
Cai
, “
Density functional theory calculation on two-dimensional MoS2/BiOX (X  =  Cl, Br, I) van der Waals heterostructures for photocatalytic action
,”
Appl. Surf. Sci.
492
,
157
165
(
2019
).
66.
B.
Zheng
,
C.
Ma
,
D.
Li
,
J.
Lan
,
Z.
Zhang
,
X.
Sun
,
W.
Zheng
,
T.
Yang
,
C.
Zhu
,
G.
Ouyang
,
G.
Xu
,
X.
Zhu
,
X.
Wang
, and
A.
Pan
, “
Band alignment engineering in two-dimensional lateral heterostructures
,”
J. Am. Chem. Soc.
140
(
36
),
11193
11197
(
2018
).
67.
S.
Tongay
,
W.
Fan
,
J.
Kang
,
J.
Park
,
U.
Koldemir
,
J.
Suh
,
D. S.
Narang
,
K.
Liu
,
J.
Ji
,
J.
Li
,
R.
Sinclair
, and
J.
Wu
, “
Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers
,”
Nano Lett.
14
(
6
),
3185
3190
(
2014
).
68.
X.
Hong
,
J.
Kim
,
S.-F.
Shi
,
Y.
Zhang
,
C.
Jin
,
Y.
Sun
,
S.
Tongay
,
J.
Wu
,
Y.
Zhang
, and
F.
Wang
, “
Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures
,”
Nat. Nanotechnol.
9
(
9
),
682
686
(
2014
).
69.
C.-H.
Lee
,
G.-H.
Lee
,
A. M.
van der Zande
,
W.
Chen
,
Y.
Li
,
M.
Han
,
X.
Cui
,
G.
Arefe
,
C.
Nuckolls
,
T. F.
Heinz
,
J.
Guo
,
J.
Hone
, and
P.
Kim
, “
Atomically thin p-n junctions with van der Waals heterointerfaces
,”
Nat. Nanotechnol.
9
(
9
),
676
681
(
2014
).
70.
J.
Kang
,
S.
Tongay
,
J.
Zhou
,
J.
Li
, and
J.
Wu
, “
Band offsets and heterostructures of two-dimensional semiconductors
,”
Appl. Phys. Lett.
102
(
1
),
012111
(
2013
).
71.
L.
Fu
,
Y.
Wan
,
N.
Tang
,
Y.
Ding
,
J.
Gao
,
J.
Yu
,
H.
Guan
,
K.
Zhang
,
W.
Wang
,
C.
Zhang
,
J.
Shi
,
X.
Wu
,
S.-F.
Shi
,
W.
Ge
,
L.
Dai
, and
B.
Shen
, “
K-l crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure
,”
Sci. Adv.
3
(11), e1700162 (
2017
).
72.
K. D.
Pham
,
N. N.
Hieu
,
H. V.
Phuc
,
I. A.
Fedorov
,
C. A.
Duque
,
B.
Amin
, and
C. V.
Nguyen
, “
Layered graphene/GaS van der Waals heterostructure: Controlling the electronic properties and Schottky barrier by vertical strain
,”
Appl. Phys. Lett.
113
(
17
),
171605
(
2018
).
73.
L.
Zhang
,
Y.
Tang
,
A. R.
Khan
,
M. M.
Hasan
,
P.
Wang
,
H.
Yan
,
T.
Yildirim
,
J. F.
Torres
,
G. P.
Neupane
,
Y.
Zhang
,
Q.
Li
, and
Y.
Lu
, “
2D materials and heterostructures at extreme pressure
,”
Adv. Sci.
7
(
24
),
2002697
(
2020
).
74.
L.
Zhang
,
C.
Liu
,
L.
Wang
,
C.
Liu
,
K.
Wang
, and
B.
Zou
, “
Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9
,”
Angew. Chem. Int. Ed.
57
(
35
),
11213
11217
(
2018
).
75.
X.-H.
Li
,
B.-J.
Wang
,
X.-L.
Cai
,
L.-W.
Zhang
,
G.-D.
Wang
, and
S.-H.
Ke
, “
Tunable electronic properties of arsenene/GaS van der Waals heterostructures
,”
RSC Adv.
7
(
45
),
28393
28398
(
2017
).
76.
H.
Zhong
,
K.
Huang
,
G.
Yu
, and
S.
Yuan
, “
Electronic and mechanical properties of few-layer borophene
,”
Phys. Rev. B
98
(
5
),
054104
(
2018
).
77.
C.
Chen
,
H.
Lv
,
P.
Zhang
,
Z.
Zhuo
,
Y.
Wang
,
C.
Ma
,
W.
Li
,
X.
Wang
,
B.
Feng
,
P.
Cheng
,
X.
Wu
,
K.
Wu
, and
L.
Chen
, “
Synthesis of bilayer borophene
,”
Nat. Chem.
14
(
1
),
25
31
(
2022
).
78.
X.
Liu
,
Q.
Li
,
Q.
Ruan
,
M. S.
Rahn
,
B. I.
Yakobson
, and
M. C.
Hersam
, “
Borophene synthesis beyond the single-atomic-layer limit
,”
Nat. Mater.
21
(
1
),
35
40
(
2022
).

Supplementary Material

You do not currently have access to this content.