A high-throughput experimental setup was used to characterize initiation threshold and growth to detonation in the explosives hexanitrostilbene (HNS) and pentaerythritol tetranitrate (PETN). The experiment sequentially launched an array of laser-driven flyers to shock samples arranged in a 96-well microplate geometry, with photonic Doppler velocimetry diagnostics to characterize flyer velocity and particle velocity at the explosive–substrate interface. Vapor-deposited films of HNS and PETN were used to provide numerous samples with various thicknesses, enabling characterization of the evolution of growth to detonation. One-dimensional hydrocode simulations were performed with reactions disabled to illustrate where the experimental data deviate from the predicted inert response. Prompt initiation was observed in 144 μm thick HNS films at flyer velocities near 3000 m/s and in 125 μm thick PETN films at flyer velocities near 2400 m/s. This experimental setup enables rapid quantification of the growth of reactions in explosive materials that can reach detonation at sub-millimeter length scales. These data can subsequently be used for parameterizing reactive burn models in hydrocode simulations, as discussed in Paper II [D. E. Kittell, R. Knepper, and A. S. Tappan, J. Appl. Phys. 131, 154902 (2022)].

1.
H.
Vantine
,
J.
Chan
,
L.
Erickson
,
J.
Janzen
,
R.
Weingart
, and
R.
Lee
,
Rev. Sci. Instrum.
51
(
1
),
116
122
(
1980
).
2.
B.
Hayes
,
Rev. Sci. Instrum.
52
(
4
),
594
603
(
1981
).
3.
R. L.
Gustavsen
,
S. A.
Sheffield
, and
R. R.
Alcon
,
J. Appl. Phys.
99
(
11
),
114907
(
2006
).
4.
S. A.
Sheffield
and
R.
Engelke
, in
Shock Wave Science and Technology Reference Library
, edited by
Y.
Horie
(
Springer-Verlag
,
Berlin
,
2009
), pp.
1
59
.
5.
D.
Stirpe
,
J. O.
Johnson
, and
J.
Wackerle
,
J. Appl. Phys.
41
(
9
),
3884
3893
(
1970
).
6.
A. C.
Schwarz
, Report SAND80-2372, Sandia National Laboratories, 1981.
7.
R. E.
Setchell
and
P. A.
Taylor
,
Prog. Astronaut. Aeronaut.
94
,
350
368
(1984).
8.
B. T.
Neyer
,
L.
Cox
,
T.
Stoutenborough
, and
R.
Tomasosk
, in
39th AAIA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
(
American Institute of Aeronautics & Astronautics
,
Huntsville
,
AL
,
2003
), p.
5138
.
9.
B. J.
Jensen
,
D. B.
Holtkamp
,
P. A.
Rigg
, and
D. H.
Dolan
,
J. Appl. Phys.
101
(
1
),
013523
(
2007
).
10.
O. T.
Strand
,
D. R.
Goosman
,
C.
Martinez
,
T. L.
Whitworth
, and
W. W.
Kuhlow
,
Rev. Sci. Instrum.
77
(
8
),
083108
(
2006
).
11.
J. D.
Olles
,
R. R.
Wixom
,
R.
Knepper
, and
A. S.
Tappan
,
Appl. Phys. Lett.
114
(
21
),
214102
(
2019
).
12.
J. J.
Hanak
,
J. Mater. Sci.
5
(
11
),
964
971
(
1970
).
13.
H.
Xiao
,
Z.
Bao
, and
H.
Zhao
,
Ind. Eng. Chem. Res.
54
(
16
),
4011
4020
(
2015
).
14.
D. D.
Dlott
,
AIP Conf. Proc.
1793
,
020001
(
2017
).
15.
E. C.
Fossum
,
C. D.
Molek
,
W. K.
Lewis
, and
M. E.
Fajardo
,
Propellants Explos. Pyrotech.
37
(
4
),
445
458
(
2012
).
16.
S. J.
Buelow
,
J. E.
Anderson
,
A. C.
Aiken
,
C. A.
Arrington
, and
B.
Jones
,
AIP Conf. Proc.
706
,
1377
1380
(
2004
).
17.
S. D.
McGrane
,
N. C.
Dang
,
V. H.
Whitley
,
C. A.
Bolme
, and
D. S.
Moore
, “
Transient absorption spectroscopy of laser shocked explosives
,” in
14th International Detonation Symposium
(
Office of Naval Research
,
Coeur d’Alene
,
ID
,
2010
), pp.
407
413
.
18.
M. R.
Armstrong
,
J. M.
Zaug
,
N.
Goldman
,
I. F. W.
Kuo
,
J. C.
Crowhurst
,
W. M.
Howard
,
J. A.
Carter
,
M.
Kashgarian
,
J. M.
Chesser
,
T. W.
Barbee
, and
S.
Bastea
,
J. Phys. Chem. A
117
(
49
),
13051
13058
(
2013
).
19.
S. D.
Park
,
M. R.
Armstrong
,
I. T.
Kohl
,
J. M.
Zaug
,
R.
Knepper
,
A. S.
Tappan
,
S.
Bastea
, and
J. J.
Kay
,
J. Phys. Chem. A
122
,
8101
8106
(
2018
).
20.
M. S.
Powell
,
M. N.
Sakano
,
M. J.
Cawkwell
,
P. R.
Bowlan
,
K. E.
Brown
,
C. A.
Bolme
,
D. S.
Moore
,
S. F.
Son
,
A.
Strachan
, and
S. D.
McGrane
,
J. Phys. Chem. A
124
(
35
),
7031
7046
(
2020
).
21.
W. P.
Bassett
,
B. P.
Johnson
,
N. K.
Neelakantan
,
K. S.
Suslick
, and
D. D.
Dlott
,
Appl. Phys. Lett.
111
(
6
),
061902
(
2017
).
22.
W. P.
Bassett
,
B. P.
Johnson
,
L.
Salvati
,
E. J.
Nissen
,
M.
Bhowmick
, and
D. D.
Dlott
,
Propellants Explos. Pyrotech.
45
(
2
),
223
235
(
2020
).
23.
M.
Bhowmick
,
E. J.
Nissen
, and
D. D.
Dlott
,
J. Appl. Phys.
124
(
7
),
075901
(
2018
).
24.
E. J.
Nissen
,
M.
Bhowmick
, and
D. D.
Dlott
,
Combust. Flame
225
,
5
12
(
2021
).
25.
L.
Salvati
,
B. P.
Johnson
,
W. P.
Bassett
, and
D. D.
Dlott
,
AIP Conf. Proc.
2272
,
030027
(
2020
).
26.
T. M.
Willey
,
K.
Champley
,
R.
Hodgin
,
L.
Lauderbach
,
M.
Bagge-Hansen
,
C.
May
,
N.
Sanchez
,
B. J.
Jensen
,
A.
Iverson
, and
T.
van Buuren
,
J. Appl. Phys.
119
(
23
),
235901
(
2016
).
27.
M.
Bowden
and
W.
Neal
,
AIP Conf. Proc.
1793
,
060020
(
2017
).
28.
W.
Neal
and
M.
Bowden
,
AIP Conf. Proc.
1793
,
030022
(
2017
).
29.
ANSI/SLAS 4-2004: Microplates—Well Positions, 2004, https://www.slas.org/education/ansi-slas-microplate-standards/.
30.
ANSI/SLAS 1-2004: Microplates—Footprint Dimensions, 2004, https://www.slas.org/education/ansi-slas-microplate-standards/.
31.
J.
McGlaun
,
S. L.
Thompson
, and
M. G.
Elrick
,
Int. J. Impact Eng.
10
,
351
360
(
1990
).
32.
R.
Knepper
,
A. S.
Tappan
,
R. R.
Wixom
, and
M. A.
Rodriguez
,
J. Mater. Res.
26
(
13
),
1605
1613
(
2011
).
33.
D. J.
Chapman
,
D. E.
Eakins
,
D. M.
Williamson
, and
W. G.
Proud
,
AIP Conf. Proc.
1426
,
442
445
(
2012
).
34.
P.
Howe
,
R.
Frey
,
B.
Taylor
, and
V.
Boyle
, “
Shock initiation and the critical energy concept
,” in
6th Symposium (International) on Detonation
(
Office of Naval Research
,
Arlington
,
VA
,
1976
), pp.
11
19
.
35.
B. A.
Khasainov
,
B. S.
Ermolaev
,
H. N.
Presles
, and
P.
Vidal
,
Shock Waves
7
(
2
),
89
105
(
1997
).
36.
A. W.
Campbell
,
W. C.
Davis
,
J. B.
Ramsay
, and
J. R.
Travis
,
Phys. Fluids
4
(
4
),
511
521
(
1961
).
37.
E. C.
Forrest
,
R.
Knepper
,
M. T.
Brumbach
,
M. A.
Rodriguez
,
K.
Archuleta
,
M. P.
Marquez
, and
A. S.
Tappan
,
ACS Appl. Mater. Interfaces
13
(
1
),
1670
1681
(
2021
).
38.
A. D.
Curtis
,
A. A.
Banishev
,
W. L.
Shaw
, and
D. D.
Dlott
,
Rev. Sci. Instrum.
85
(
4
),
043908
(
2014
).
39.
A. A.
Banishev
,
W. L.
Shaw
,
W. P.
Bassett
, and
D. D.
Dlott
,
J. Dyn. Behav. Mater.
2
,
194
206
(
2016
).
40.
Edmund Optics
, See http://www.edmundoptics.com/technical-resources-center/optomechanics/optical-cage-system-application-digital-video-microscope/ for Step-by-step instructions for building a fluorescence microscope.
41.
D. H.
Dolan
, See https://github.com/SMASHtoolbox/release for SMASH analysis toolbox.
42.
B. D.
Lambourn
,
N. J.
Whitworth
,
C. A.
Handley
, and
H. R.
James
,
AIP Conf. Proc.
955
,
137
140
(
2007
).
43.
C. M.
May
and
C. M.
Tarver
,
AIP Conf. Proc.
1195
,
275
278
(
2009
).
44.
W. J.
Carter
, and
S. P.
Marsh
, Report LA-13006-MS, Los Alamos National Laboratory, 1995.
45.
D. E.
Kittell
and
C. D.
Yarrington
,
Combust. Theory Model.
20
,
941
957
(
2016
).
46.
T. R.
Shan
,
R. R.
Wixom
,
A. E.
Mattsson
, and
A. P.
Thompson
,
J. Phys. Chem. B
117
,
928
936
(
2013
).
47.
N. E.
Kerschen
and
D. E.
Kittell
,
AIP Conf. Proc.
2272
,
050011
(
2020
).
48.
D. E.
Kittell
,
R.
Knepper
, and
A. S.
Tappan
,
J. Appl. Phys.
131
, 154902 (
2022
).
49.
M. M.
Carroll
and
A. C.
Holt
,
J. Appl. Phys.
43
,
1626
1636
(
1972
).
50.
M.
Bhowmick
,
W. P.
Basset
,
S.
Matveev
,
L.
Salvati
, and
D. D.
Dlott
,
AIP Adv.
8
(
12
),
125123
(
2018
).
51.
R.
Knepper
,
R. R.
Wixom
,
M. P.
Marquez
, and
A. S.
Tappan
,
AIP Conf. Proc.
1793
,
030014
(
2017
).
52.
R.
Knepper
,
M. P.
Marquez
, and
A. S.
Tappan
, “
Effects of confinement on detonation behavior of vapor-deposited hexanitrostilbene (HNS) films
,”
16th International Detonation Symposium
(
Office of Naval Research
,
Cambridge
,
MD
,
2018
), pp.
547
555
.
53.
R.
Knepper
,
D. E.
Kittell
,
M. P.
Marquez
, and
A. S.
Tappan
,
AIP Conf. Proc.
2272
,
050012
(
2020
).
54.
R.
Knepper
,
E. C.
Forrest
,
M. P.
Marquez
, and
A. S.
Tappan
,
AIP Conf. Proc.
1979
,
150022
(
2018
).
55.
A. C.
Schwarz
, Report SC-RR-71 0673, Sandia Laboratories, 1972.
56.
H. R.
James
,
Propellants Explos. Pyrotech.
21
(
1
),
8
13
(
1996
).
57.
E. J.
Welle
,
C. D.
Molek
,
R. R.
Wixom
, and
P.
Samuels
,
J. Phys.: Conf. Ser.
500
,
052049
(
2014
).
58.
G. X.
Zhang
and
B. L.
Weeks
,
Appl. Surf. Sci.
256
(
8
),
2363
2366
(
2010
).
59.
S. R.
Forrest
,
P. E.
Burrows
,
E. I.
Haskal
, and
F. F.
So
,
Phys. Rev. B
49
(
16
),
11309
11321
(
1994
).
60.
P.
Fenter
,
F.
Schreiber
,
L.
Zhou
,
P.
Eisenberger
, and
S. R.
Forrest
,
Phys. Rev. B
56
(
6
),
3046
3053
(
1997
).
61.
M.
Mobus
and
N.
Karl
,
Thin Solid Films
215
(
2
),
213
217
(
1992
).
62.
F.
Schreiber
,
Phys. Status Solidi A
201
(
6
),
1037
1054
(
2004
).
63.
D.
Kafer
and
G.
Witte
,
Phys. Chem. Chem. Phys.
7
,
2850
2853
(
2005
).
64.
F.
Yang
,
M.
Shtein
, and
S. R.
Forrest
,
J. Appl. Phys.
98
,
014906
(
2005
).
65.
G.
Witte
,
K.
Hanel
,
S.
Sohnchen
, and
C.
Woll
,
Appl. Phys. A
82
,
447
455
(
2006
).
66.
D. Y.
Zhong
,
M.
Hirtz
,
W. C.
Wang
,
R. F.
Dou
,
L. F.
Chi
, and
H.
Fuchs
,
Phys. Rev. B
77
,
113404
(
2008
).
67.
K.
Vasseur
,
C.
Rolin
,
S.
Vandezande
,
K.
Temst
,
L.
Froyen
, and
P.
Heremans
,
J. Phys. Chem. C
114
,
2730
2737
(
2010
).

Supplementary Material

You do not currently have access to this content.