As the size of micro light-emitting diodes (μLEDs) decreases, μLEDs encounter etching damage especially at the sidewalls that critically affects their properties. In this study, we investigated the influence of etching bias power (Pbias) on the performance of μLEDs and found that the current–voltage and light output–current characteristics of μLEDs were enhanced when Pbias was reduced. It was shown that at low Pbias, the chemical reaction between etching gas and gallium nitride, rather than ion sputtering, dominated the etching process, leading to low plasma damage and rough surface morphology. Additionally, to understand the etching-induced surface roughening behaviors, various substrates with different threading dislocation densities were treated at low Pbias. It was found that for the sample (with p-contact size of 10 × 10 μm2), the efficiency droop was approximately 20%, although the current reached 10 mA due most probably to the suppressed polarization effect in the quantum well. It was further observed that the external quantum efficiency (EQE) was dependent on Pbias, where the lowest Pbias yielded the highest maximum EQE, indicating that the plasma damage was mitigated by reducing Pbias. Optimization of dry etching and polarization-suppression conditions could pave the way for realizing high-performance and brightness μLEDs for next-generation displays.

1.
Z.
Liu
,
C.-H.
Lin
,
B.-R.
Hyun
,
C.-W.
Sher
,
Z.
Lv
,
B.
Luo
,
F.
Jiang
,
T.
Wu
,
C.-H.
Ho
,
H.-C.
Kuo
, and
J.-H.
He
,
Light: Sci. Appl.
9
,
83
(
2020
).
2.
E.-L.
Hsiang
,
Z.
Yang
,
Q.
Yang
,
Y.-F.
Lan
, and
S.-T.
Wu
,
J. Soc. Inf. Disp.
29
,
446
465
(
2021
).
3.
L.
Zhang
,
F.
Ou
,
W. C.
Chong
,
Y.
Chen
, and
Q.
Li
,
J. Soc. Inf. Disp.
26
,
137
145
(
2018
).
4.
C.-M.
Kang
,
J.-Y.
Lee
,
D.-J.
Kong
,
J.-P.
Shim
,
S.
Kim
,
S.-H.
Mun
,
S.-Y.
Choi
,
M.-D.
Park
,
J.
Kim
, and
D.-S.
Lee
,
ACS Photonics
5
,
4413
4422
(
2018
).
5.
H. E.
Lee
,
J. H.
Shin
,
J. H.
Park
,
S. K.
Hong
,
S. H.
Park
,
S. H.
Lee
,
J. H.
Lee
,
I.-S.
Kang
, and
K. J.
Lee
,
Adv. Funct. Mater.
29
,
1808075
(
2019
).
6.
J. M.
Smith
,
R.
Ley
,
M. S.
Wong
,
Y. H.
Baek
,
J. H.
Kang
,
C. H.
Kim
,
M. J.
Gordon
,
S.
Nakamura
,
J. S.
Speck
, and
S. P.
Denbaars
,
Appl. Phys. Lett.
116
,
071102
(
2020
).
7.
V.
Lee
,
Proc. SPIE
11310
,
113102S
(
2020
).
8.
Z.
Chen
,
S.
Yan
, and
C.
Danesh
,
J. Phys. D: Appl. Phys.
54
,
123001
(
2021
).
9.
M. S.
Wong
,
S.
Nakamura
, and
S. P.
DenBaars
,
ECS J. Solid State Sci. Technol.
9
,
015012
(
2020
).
10.
F.
Jiang
,
B. R.
Hyun
,
Y.
Zhang
, and
Z.
Liu
,
Phys. Status Solidi RRL
15
,
200487
(
2021
); available at https://onlinelibrary.wiley.com/doi/full/10.1002/pssr.202000487.
11.
P. J.
Parbrook
,
B.
Corbett
,
J.
Han
,
T.-Y.
Seong
, and
H.
Amano
,
Laser Photonics Rev.
15
,
2000133
(
2021
).
12.
P.
Tian
,
J. J. D.
McKendry
,
Z.
Gong
,
B.
Guilhabert
,
I. M.
Watson
,
E.
Gu
,
Z.
Chen
,
G.
Zhang
, and
M. D.
Dawson
,
Appl. Phys. Lett.
101
,
231110
(
2012
).
13.
F.
Olivier
,
A.
Daami
,
C.
Licitra
, and
F.
Templier
,
Appl. Phys. Lett.
111
,
022104
(
2017
).
14.
F.
Olivier
,
S.
Tirano
,
L.
Dupré
,
B.
Aventurier
,
C.
Largeron
, and
F.
Templier
,
J. Lumin.
191
,
112
116
(
2017
).
15.
J.-T.
Oh
,
S.-Y.
Lee
,
Y.-T.
Moon
,
J. H.
Moon
,
S.
Park
,
K. Y.
Hong
,
K. Y.
Song
,
C.
Oh
,
J.-I.
Shim
,
H.-H.
Jeong
,
J.-O.
Song
,
H.
Amano
, and
T.-Y.
Seong
,
Opt. Express
26
,
11194
(
2018
).
16.
M. S.
Wong
,
D.
Hwang
,
A. I.
Alhassan
,
C.
Lee
,
R.
Ley
,
S.
Nakamura
, and
S. P.
DenBaars
,
Opt. Express
26
,
21324
(
2018
).
17.
D.-H.
Lee
,
J.-H.
Lee
,
J.-S.
Park
,
T.-Y.
Seong
, and
H.
Amano
,
ECS J. Solid State Sci. Technol.
9
,
055001
(
2020
).
18.
M.
Kim
,
S. H.
Jang
, and
J. S.
Jang
,
J. Mater. Chem. C
3
,
8875
(
2015
); available at https://pubs.rsc.org/en/content/articlehtml/2015/tc/c5tc01598g.
19.
B.
Tang
,
J.
Miao
,
Y.
Liu
,
H.
Wan
,
N.
Li
,
S.
Zhou
, and
C.
Gui
,
Nanomaterials
9
,
319
(
2019
).
20.
M. S.
Wong
,
C.
Lee
,
D. J.
Myers
,
D.
Hwang
,
J. A.
Kearns
,
T.
Li
,
J. S.
Speck
,
S.
Nakamura
, and
S. P.
Denbaars
,
Appl. Phys. Express
12
,
097004
(
2019
).
21.
R. T.
Ley
,
J. M.
Smith
,
M. S.
Wong
,
T.
Margalith
,
S.
Nakamura
,
S. P.
Denbaars
, and
M. J.
Gordon
,
Appl. Phys. Lett.
116
,
251104
(
2020
).
22.
MicroLED Displays: Hype and Reality, Hopes and Challenges (YOLE Development,
2018
).
23.
A.
Ryer
,
Light Measurement Handbook
(
International Light
,
1997
).
24.
S.
Nakamura
,
T.
Mukai
,
M.
Senoh
, and
N.
Iwasa
,
Jpn. J. Appl. Phys.
31
,
L139
L142
(
1992
).
25.
S. N.
Mohammad
,
J. Appl. Phys.
95
,
7940
7953
(
2004
).
26.
J.
Chen
and
W. D.
Brewer
,
Adv. Electron. Mater.
1
,
1500113
(
2015
).
27.
M.
Anaya
,
B. P.
Rand
,
R. J.
Holmes
,
D.
Credgington
,
H. J.
Bolink
,
R. H.
Friend
,
J.
Wang
,
N. C.
Greenham
, and
S. D.
Stranks
,
Nat. Photonics
13
,
818
821
(
2019
).
28.
Z.
Liu
,
M.
Imamura
,
A.
Asano
,
K.
Ishikawa
,
K.
Takeda
,
H.
Kondo
,
O.
Oda
,
M.
Sekine
, and
M.
Hori
,
Appl. Phys. Express
10
,
086502
(
2017
).
29.
S.
Yamada
,
M.
Omori
,
H.
Sakurai
,
Y.
Osada
,
R.
Kamimura
,
T.
Hashizume
,
J.
Suda
, and
T.
Kachi
,
Appl. Phys. Express
13
,
016505
(
2020
).
30.
S.
Yamada
,
H.
Sakurai
,
Y.
Osada
,
K.
Furuta
,
T.
Nakamura
,
R.
Kamimura
,
T.
Narita
,
J.
Suda
, and
T.
Kachi
,
Appl. Phys. Lett.
118
,
102101
(
2021
).
31.
C.
Sah
,
R.
Noyce
, and
W.
Shockley
,
Proc. IRE
45
,
1228
1243
(
1957
).
32.
D.
Zhu
,
J.
Xu
,
A. N.
Noemaun
,
J. K.
Kim
,
E. F.
Schubert
,
M. H.
Crawford
, and
D. D.
Koleske
,
Appl. Phys. Lett.
94
,
081113
(
2009
).
33.
A. T.
Ping
,
A. C.
Schmitz
,
I.
Adesida
,
M. A.
Khan
,
Q.
Chen
, and
J. W.
Yang
,
J. Electron. Mater.
26
,
266
271
(
1997
).
34.
K.
Dannecker
and
J.
Baringhaus
,
J. Vac. Sci. Technol., A
38
,
043204
(
2020
).
35.
T.
Hino
,
S.
Tomiya
,
T.
Miyajima
,
K.
Yanashima
,
S.
Hashimoto
, and
M.
Ikeda
,
Appl. Phys. Lett.
76
,
3421
3423
(
2000
).
36.
F.
Gou
,
E.-L.
Hsiang
,
G.
Tan
,
P.-T.
Chou
,
Y.-L.
Li
,
Y.-F.
Lan
, and
S.-T.
Wu
,
Opt. Express
27
,
A746
(
2019
).
38.
D.
Denier van der Gon
,
D.
Timmerman
,
Y.
Matsude
,
S.
Ichikawa
,
M.
Ashida
,
P.
Schall
, and
Y.
Fujiwara
,
Opt. Lett.
45
,
3973
(
2020
).
39.
X. H.
Zheng
,
H.
Chen
,
Z. B.
Yan
,
Y. J.
Han
,
H. B.
Yu
,
D. S.
Li
,
Q.
Huang
, and
J. M.
Zhou
,
J. Cryst. Growth
255
,
63
67
(
2003
).
40.
C. S.
Gallinat
,
G.
Koblmüller
,
F.
Wu
, and
J. S.
Speck
,
J. Appl. Phys.
107
,
053517
(
2010
).
41.
W.
Lee
,
M.-H.
Kim
,
D.
Zhu
,
A. N.
Noemaun
,
J. K.
Kim
, and
E. F.
Schubert
,
J. Appl. Phys.
107
,
063102
(
2010
).
42.
G.-B.
Lin
,
D.-Y.
Kim
,
Q.
Shan
,
J.
Cho
,
E. F.
Schubert
,
H.
Shim
,
C.
Sone
, and
J. K.
Kim
,
IEEE Photonics J.
5
,
1600207
(
2013
).
43.
M. S.
Wong
,
J.
Back
,
D.
Hwang
,
C.
Lee
,
J.
Wang
,
S.
Gandrothula
,
T.
Margalith
,
J. S.
Speck
,
S.
Nakamura
, and
S. P.
Denbaars
,
Appl. Phys. Express
14
,
086502
(
2021
).
44.
S.-J.
Lee
,
J.-C.
Song
,
H.-J.
Park
,
J.-B.
Park
,
S.-R.
Jeon
,
C.-R.
Lee
,
D.-W.
Jeon
, and
J. H.
Baek
,
ECS J. Solid State Sci. Technol.
4
,
Q92
Q95
(
2015
).
45.
S. F.
Chichibu
,
A. C.
Abare
,
M. P.
Mack
,
M. S.
Minsky
,
T.
Deguchi
,
D.
Cohen
,
P.
Kozodoy
,
S. B.
Fleischer
,
S.
Keller
,
J. S.
Speck
,
J. E.
Bowers
,
E.
Hu
,
U. K.
Mishra
,
L. A.
Coldren
,
S. P.
DenBaars
,
K.
Wada
,
T.
Sota
, and
S.
Nakamura
,
Mater. Sci. Eng., B
59
,
298
306
(
1999
).
46.
Y.-S.
Yoo
,
J.-H.
Na
,
S. J.
Son
, and
Y.-H.
Cho
,
Sci. Rep.
6
,
34586
(
2016
).
47.
T.
Kumabe
,
Y.
Ando
,
H.
Watanabe
,
M.
Deki
,
A.
Tanaka
,
S.
Nitta
,
Y.
Honda
, and
H.
Amano
,
Jpn. J. App. Phys.
60
,
SBBD03
(
2021
).
48.
J.
Zhu
,
T.
Takahashi
,
D.
Ohori
,
K.
Endo
,
S.
Samukawa
,
M.
Shimizu
, and
X.-L.
Wang
,
Phys. Status Solidi A
216
,
1900380
(
2019
).

Supplementary Material

You do not currently have access to this content.