We propose the design of three port photonic and plasmonic demultiplexers where filtering toward the two outputs is based on the phenomena of Fano resonances and electromagnetically induced transparency (EIT). We use a Cross-shape resonator in one output and a U-shape resonator composed of two stubs in the other output. We give a theoretical demonstration of the geometrical parameters of both resonators in order to filter one wavelength in one output while leaving the other output unperturbed. These results are confirmed by experimental validation in the radio frequency domain and a numerical simulation in the infrared (IR) domain using plasmonic metal–insulator–metal waveguides. The Cross resonator in the first output can give rise to an EIT resonance, whereas the U-shaped resonator in the second output may exhibit both EIT and Fano resonances depending on the lengths chosen for the stubs. Therefore, different demultiplexing schemes can be proposed such as achieving a Fano resonance in one output and an EIT in the other, or EIT resonances in both outputs. The Fano resonance is obtained by bringing resonance close to transmission zero, whereas the EIT results from the squeezing of resonance between two transmission zeros. When the widths of the resonances tend to zero, they transform to trapped or bound states in the continuum with an infinite lifetime. We show that the crosstalk between the two channels can be reduced to 82 dB and the sensitivity can reach 2390.8 nm/RIU, RIU is the refractive index units. Finally, we highlight the performance of our design as a high sensitive filter and sensor in the IR domain. In this work, the analytical calculations and demonstrations are performed by using Green’s function approach, the experimental verifications are realized by means of coaxial cables operating in the radio frequency range and the numerical simulations are obtained using the finite element method via Comsol Multiphysics software.

1.
U.
Fano
, “
Effects of configuration interaction on intensities and phase shifts
,”
Phys. Rev.
124
,
1866
(
1961
).
2.
K. J.
Boller
,
A.
Imamoglu
, and
S. E.
Harris
, “
Observation of electromagnetically induced transparency
,”
Phys. Rev. Lett.
66
,
2593
(
1991
).
3.
C. W.
Hsu
,
B.
Zhen
,
A. D.
Stone
,
J. D.
Joannopoulos
, and
M.
Solvacic
, “
Bound states in the continuum
,”
Nat. Rev. Mater.
1
,
16048
(
2016
).
4.
L. V.
Hau
,
S. E.
Harris
,
Z.
Dutton
, and
C. H.
Behroozi
, “
Light speed reduction to 17 metres per second in an ultracold atomic gas
,”
Nature
397
,
594
(
1999
).
5.
S.
Wang
,
T.
Zhao
,
S.
Yu
, and
W.
Ma
, “
High-performance nano-sensing and slow-light applications based on tunable multiple Fano resonances and EIT-like effects in coupled plasmonic resonator system
,”
IEEE Access
8
,
40599
(
2020
).
6.
R.
Adhikari
,
D.
Chauhan
,
G. T.
Mola
and
R. P.
Dwivedi
, “
A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications
,”
Opto-Electron. Rev.
29
,
148
(
2021
).
7.
M.
Soler
and
L. M.
Lechuga
, “
Principles, technologies, and applications of plasmonic biosensors
,”
J. Appl. Phys.
129
,
111102
(
2021
).
8.
A.
Mouadili
,
E. H.
El Boudouti
, and
B.
Djafari-Rouhani
, “
Acoustic demultiplexer based on Fano and induced transparency resonances in slender tubes
,”
Eur. Phys. J. Appl. Phys.
90
,
10902
(
2020
).
9.
T.
Gu
,
Y.
Cheng
,
Z.
Wen
,
E. H.
El Boudouti
,
Y.
Jin
,
Y.
Li
, and
B.
Djafari-Rouhani
, “
Induced transparency based subwavelength acoustic demultiplexers
,”
J. Phys. D: Appl. Phys.
54
,
175301
(
2021
).
10.
A.
Mouadili
,
E. H.
El Boudouti
,
A.
Soltani
,
A.
Talbi
,
B.
Djafari-Rouhani
,
A.
Akjouj
, and
K.
Haddadi
, “
Electromagnetically induced absorption in detuned stub waveguides: A simple analytical and experimental model
,”
J. Phys.: Condens. Matter
26
,
505901
(
2014
).
11.
A.
Mouadili
,
E. H.
El Boudouti
,
A.
Soltani
,
A.
Talbi
,
A.
Akjouj
, and
B.
Djafari-Rouhani
, “
Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits
,”
J. Appl. Phys.
113
,
164101
(
2013
).
12.
N.
Caselli
,
F.
Intonti
,
F.
La China
,
F.
Biccari
,
F.
Riboli
,
A.
Gerardino
,
L.
Li
,
E. H.
Linfield
,
F.
Pagliano
,
A.
Fiore
, and
M.
Gurioli
, “
Generalized Fano lineshapes reveal exceptional points in photonic molecules
,”
Nat. Commun.
9
,
396
(
2018
).
13.
J.
Chen
,
Z.
Li
,
J.
Li
, and
Q.
Gong
, “
Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference
,”
Opt. Express
19
,
9976
9985
(
2011
).
14.
Z.
Chen
,
R.
Hu
,
L.
Cui
,
L.
Yu
,
L.
Wang
, and
J.
Xiao
, “
Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems
,”
Opt. Commun.
320
,
6
(
2014
).
15.
S.
Paul
and
M.
Ray
, “
Nonlinearity modulation based multiple Fano resonance and multi-spectral switching in a nanoplasmonic waveguide-coupled cavity system
,”
J. Appl. Phys.
124
,
193104
(
2018
).
16.
S.
Simoncelli
,
Y.
Li
,
E.
Cortes
, and
S. A.
Maier
, “
Imaging plasmon hybridization of Fano resonances via hot-electron-mediated absorption mapping
,”
Nano Lett.
18
,
3400
(
2018
).
17.
T.
Huang
,
S.
Zeng
,
X.
Zhao
,
Z.
Cheng
, and
P. P.
Shum
, “
Fano resonance enhanced surface plasmon resonance sensors operating in near-infrared
,”
Photonics
5
,
23
(
2018
).
18.
S.
Jamilana
,
G.
Semouchkin
, and
E.
Semouchkina
, “
Analog of electromagnetically induced transparency in metasurfaces composed of identical dielectric disks
,”
J. Appl. Phys.
129
,
063101
(
2021
).
19.
Y.
Pennec
,
M.
Beaugeois
,
B.
Djafari-Rouhani
,
R.
Sainidou
,
A.
Akjouj
,
J. O.
Vasseur
,
L.
Dobrzynski
,
E. H.
El Boudouti
,
J.-P.
Vilcot
,
M.
Bouazaoui
, and
J.-P.
Vigneron
,
Photonics Nanostructures: Fundam. Appl.
6
,
26
31
(
2008
).
20.
Y.
Li
,
H.
Jiang
,
L.
He
,
H.
Li
,
Y.
Zhang
, and
H.
Chen
, “
Multichanneled filter based on a branchy defect in microstrip photonic crystal
,”
Appl. Phys. Lett.
88
,
081106
(
2006
).
21.
C.
Jin
,
S.
Han
,
X.
Meng
,
B.
Cheng
, and
D.
Zhang
, “
Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal
,”
J. Appl. Phys.
91
,
4771
(
2002
).
22.
A. A.
Faghani
and
E.
Yaghoubi
, “
Triple-channel glasses-shape nanoplasmonic demultiplexer based on multi nanodisk resonators in MIM waveguide
,”
Optik
237
,
166697
(
2021
).
23.
S. M.
Mousavizadeh
,
M.
Soroosh
, and
F.
Mehdizadeh
, “
Photonic crystal-based demultiplexers using defective resonant cavity
,”
Optoelectron. Adv. Mater. Rapid Commun.
9
,
28
(
2015
).
24.
A.
Khorshidahmad
and
A. G.
Kirk
, “
Composite superprism photonic crystal demultiplexer: Analysis and design
,”
Opt. Express
18
,
20518
(
2010
).
25.
M.
Gindi
,
A.
Melamed
, and
D.
Malka
, “
A four green-light demultiplexer using a multi gallium nitride slot-waveguide structure
,”
Photonics Nanostructures: Fundam. Appl.
42
,
100855
(
2020
).
26.
T.
Shoresh
,
N.
Katanov
, and
D.
Malka
, “
1×4 MMI visible light wavelength demultiplexer based on a GaN slot-waveguide structure
,”
Photonics Nanostructures: Fundam. Appl.
30
,
45
49
(
2018
).
27.
H.
Lu
,
X.
Liu
,
Y.
Gong
,
D.
Mao
, and
L.
Wang
, “
Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities
,”
Opt. Express
19
,
12885
(
2011
).
28.
T.
Nurmohammadi
,
K.
Abbasian
, and
R.
Yadipour
, “
A proposal for a demultiplexer based on plasmonic metal insulator metal waveguide-coupled ring resonator operating in near-infrared spectrum
,”
Optik
142
,
550
(
2017
).
29.
G.
Delphi
,
S.
Olyaee
,
M.
Seifouri
, and
A.
Mohebzadeh Bahabady
, “
Design of low cross-talk and high-quality-factor 2-channel and 4-channel optical demultiplexers based on photonic crystal nano-ring resonator
,”
Photonic Netw. Commun.
38
,
250
(
2019
).
30.
H.
Liu
,
Y.
Gao
,
B.
Zhu
,
G.
Ren
, and
S.
Jian
, “
A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators
,”
Opt. Commun.
334
,
164
(
2015
).
31.
Z.
Wei
,
X.
Zhang
,
N.
Zhong
,
X.
Tan
,
X.
Li
,
Y.
Liu
,
F.
Wang
,
H.
Meng
, and
R.
Liang
, “
Optical band-stop filter and multi-wavelength channel selector with plasmonic complementary aperture embedded in double-ring resonator
,”
Photonics Nanostructures: Fundam. Appl.
23
,
45
(
2017
).
32.
A.
Mouadili
,
E. H.
El Boudouti
,
A.
Soltani
,
A.
Talbi
,
K.
Haddadi
,
A.
Akjouj
, and
B.
Djafari-Rouhani
, “
Photonic demultiplexer based on electromagnetically induced transparency resonances
,”
J. Phys. D: Appl. Phys.
52
,
075101
(
2019
).
33.
A.
Mouadili
,
S.
Khattou
,
M.
Amrani
,
E. H.
El Boudouti
,
N.
Fettouhi
,
A.
Talbi
,
A.
Akjouj
, and
B.
Djafari-Rouhani
, “
Y-shaped demultiplexer photonic circuits based on detuned stubs: Application to radiofrequency domain
,”
Photonics
8
,
386
(
2021
).
34.
M.
Amrani
,
S.
Khattou
,
A.
Noual
,
E. H.
El Boudouti
, and
B.
Djafari-Rouhani
, “
Plasmonic demultiplexer based on induced transparency resonances: Analytical and numerical study
,”
Lect. Notes Electr. Eng.
681
,
239
(
2021
).
35.
Z.
Zhu
,
C. E.
Garcia-Ortiz
,
Z.
Han
,
I. P.
Radko
, and
S. I.
Bozhevolnyi
, “
Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect
,”
Appl. Phys. Lett.
103
,
061108
(
2013
).
36.
M.
Amrani
,
S.
Khattou
,
Y.
Rezzouk
,
A.
Mouadili
,
A.
Noual
,
E. H.
El Boudouti
, and
B.
Djafari-Rouhani
, “
Analytical and numerical study of T-shaped plasmonic demultiplexer based on Fano and induced transparency resonances
,”
J. Phys. D: Appl. Phys.
55
,
075106
(
2022
).
37.
X.
Piao
,
S.
Yu
, and
N.
Park
, “
Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator
,”
Opt. Express
20
,
18994
(
2012
).
38.
J.
Chen
,
Z.
Li
,
Y.
Zou
,
Z.
Deng
,
J.
Xiao
, and
Q.
Gong
, “
Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits
,”
Plasmonics
8
,
1627
(
2013
).
39.
J.
Chen
,
C.
Wang
,
R.
Zhang
, and
J.
Xiao
, “
Multiple plasmon-induced transparencies in coupled-resonator systems
,”
Opt. Lett.
37
,
5133
(
2012
).
40.
Z.
Zhang
,
J.
Yang
,
X.
He
,
Y.
Han
,
J.
Huang
, and
D.
Chen
, “
Tunable plasmon-induced transparency and slow light in terahertz chipscale semiconductor plasmonic waveguides
,”
J. Phys. D: Appl. Phys.
53
,
315101
(
2020
).
41.
L.
Dobrzynski
,
A.
Akjouj
,
E. H.
El Boudouti
,
G.
Lévêque
,
H.
Al-Wahsh
,
Y.
Pennec
,
C.
Ghouila-Houri
,
A.
Talbi
,
B.
Djafari-Rouhani
, and
Y.
Jin
,
Photonics
(
Elsevier
,
Amsterdam
,
2020
).
42.
J. O.
Vasseur
,
A.
Akjouj
,
L.
Dobrzynski
,
B.
Djafari-Rouhani
, and
E. H.
El Boudouti
, “
Photon, electron, magnon, phonon and plasmon mono-mode circuits
,”
Surf. Sci. Rep.
54
,
1
(
2004
).
43.
G. J.
Schneider
,
S.
Hanna
,
J. L.
Davis
, and
G. H.
Watson
, “
Defect modes in coaxial photonic crystals
,”
J. Appl. Phys.
90
,
2642
(
2001
).
44.
E. H.
El Boudouti
,
N.
Fettouhi
,
A.
Akjouj
,
B.
Djafari-Rouhani
,
A.
Mir
,
J. O.
Vasseur
,
L.
Dobrzynski
, and
J.
Zemmouri
, “
Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures
,”
J. Appl. Phys.
95
,
1102
(
2004
).
45.
J.
Arias
,
A.
Sánchez-Meroño
,
M. M.
Sánchez-López
, and
I.
Moreno
, “
Slow and fast light in three-beam interferometers: Theory and experiment
,”
Phys. Rev. A
85
,
033815
(
2012
).
46.
M.
Bazargani
,
B.
Gharekhanlou
, and
M.
Banihashemi
, “
Design of optical 2-channel demultiplexer using selective optofluidic infiltration within photonic crystal structure
,”
Radioengineering
29
,
3
(
2020
).
47.
G.
Delphi
,
S.
Olyaee
,
M.
Seifouri
, and
A.
Mohebzadeh-Bahabady
, “
Design of an add filter and a 2 channel optical demultiplexer with high quality factor based on nanoring resonator
,”
J. Comput. Electron.
18
,
1372
(
2019
).
48.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer
,
2007
).
49.
M.
Zhang
and
Z.
Wang
, “
Analytical method for metal-insulator-metal surface plasmon polaritons waveguide networks
,”
Opt. Express
27
,
303
(
2019
).
50.
H. U.
Yang
,
J.
D’Archangel
,
M. L.
Sundheimer
,
E.
Tucker
,
G. D.
Boreman
, and
M. B.
Raschke
, “
Optical dielectric function of silver
,”
Phys. Rev. B
91
,
235137
(
2015
).
51.
L.
Niu
,
Y.
Xiang
,
W.
Luo
,
W.
Cai
,
J.
Qi
,
X.
Zhang
, and
J.
Xu
, “
Nanofocusing of the free-space optical energy with plasmonic Tamm states
,”
Sci. Rep.
6
,
39125
(
2016
).
52.
S.
Naghizadeh
and
S. E.
Kocabas
, “
Guidelines for designing 2D and 3D plasmonic stub resonators
,”
JOSA B
34
,
207
217
(
2017
).
53.
Z.
Zhang
,
J.
Yang
,
X.
He
,
J.
Zhang
,
J.
Huang
,
D.
Chen
, and
Y.
Han
, “
Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator
,”
Sensors
18
,
116
(
2018
).
54.
M. R.
Rakhshani
and
M. A.
Mansouri-Birjandi
, “
Dual wavelength demultiplexer based on metal insulator metal plasmonic circular ring resonators
,”
J. Mod. Opt.
63
,
1078
(
2016
).
55.
R.
Zafar
,
P.
Chauhan
,
M.
Salim
, and
G.
Singh
, “
Metallic slit loaded ring resonator based plasmonic demultiplexer with large crosstalk
,”
Plasmonics
63
,
1013
(
2019
).
56.
E.
Rafiee
,
R.
Negahdari
, and
F.
Emami
, “
Plasmonic multi channel filter based on split ring resonators: Application to photothermal therapy
,”
Photonics Nanostructures: Fundam. Appl.
33
,
21
(
2019
).
57.
M. A.
Butt
,
S. N.
Khonina
, and
N. L.
Kazanskiy
, “
A multichannel metallic dual nano-wall square split-ring resonator: Design analysis and applications
,”
Laser Phys. Lett.
16
,
126201
(
2019
).
You do not currently have access to this content.