This research demonstrates the feasibility of using a non-collinear wave mixing technique to image internal microscale damage throughout the interior volume of a relatively large (28 cm thick) concrete component. By exploiting the underlying mechanics of nonlinear wave mixing, it is possible to mix two incident waves with frequencies low enough to propagate without being scattered by the inherently heterogenous, concrete microstructure, while still being sensitive to damage features with length scales well below these incident wavelengths. For this study, scanning and imaging is accomplished by manually adjusting the locations of the two incident waves, while a knowledge of the wave speeds in concrete plus synchronization identifies the location of the mixing zone—the specific volume of concrete being imaged. The viability of the proposed technique is demonstrated by examining a concrete prism specimen with known, embedded internal microscale damage.

1.
S.
Beniwal
,
D.
Ghosh
, and
A.
Ganguli
, “
Ultrasonic imaging of concrete using scattered elastic wave modes
,”
NDT & E Int.
82
,
26
35
(
2016
).
2.
H.
Choi
and
J. S.
Popovics
, “
NDE application of ultrasonic tomography to a full-scale concrete structure
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
,
1076
1085
(
2015
).
3.
K.
Hoegh
and
L.
Khazanovich
, “
Extended synthetic aperture focusing technique for ultrasonic imaging of concrete
,”
NDT & E Int.
74
,
33
42
(
2015
).
4.
F.
Moradi-Marani
,
S. A.
Kodjo
,
P.
Rivard
, and
C.-P.
Lamarche
, “
Nonlinear acoustic technique of time shift for evaluation of alkali-silica reaction damage in concrete structures
,”
ACI Mater. J.
111
,
581
592
(
2014
).
5.
C.
Payan
,
T. J.
Ulrich
,
P. Y.
Le Bas
,
T.
Saleh
, and
M.
Guimaraes
, “
Quantitative linear and nonlinear resonant inspection techniques and analysis for material characterization: Application to concrete thermal damage
,”
J. Acoust. Soc. Am.
136
,
537
546
(
2014
).
6.
P.
Shokouhi
,
J.
Rivière
,
C. R.
Lake
,
P. Y.
Le Bas
, and
T. J.
Ulrich
, “
Dynamic acousto-elastic testing of concrete with a coda-wave probe: Comparison with standard linear and nonlinear ultrasonic techniques
,”
Ultrasonics
81
,
59
65
(
2017
).
7.
G.
Kim
,
J.-Y.
Kim
,
K. E.
Kurtis
, and
L. J.
Jacobs
, “
Drying shrinkage in concrete assessed by nonlinear ultrasound
,”
Cem. Concr. Res.
92
,
16
20
(
2017
).
8.
P.
Antonaci
,
C. L. E.
Bruno
,
A. S.
Gliozzi
, and
M.
Scalerandi
, “
Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods
,”
Cem. Concr. Res.
40
,
1106
1113
(
2010
).
9.
G.
Kim
,
C.-W.
In
,
J.-Y.
Kim
,
K. E.
Kurtis
, and
L. J.
Jacobs
, “
Air-coupled detection of nonlinear Rayleigh surface waves in concrete-Application to microcracking detection
,”
NDT & E Int
67
,
64
70
(
2014
).
10.
G.
Kim
,
J.-Y.
Kim
,
K. E.
Kurtis
,
L. J.
Jacobs
,
Y.
Le Pape
, and
M.
Guimaraes
, “
Quantitative evaluation of carbonation in concrete using nonlinear ultrasound
,”
Mater. Struct.
49
,
399
409
(
2016
).
11.
G.
Kim
,
E. R.
Giannini
,
N.
Klenke
,
J.-Y.
Kim
,
K. E.
Kurtis
, and
L. J.
Jacobs
, “
Measuring alkali silica reaction (ASR) microscale damage in full-scale concrete slabs using nonlinear Rayleigh surface waves
,”
J. Nondestruct. Eval.
36
,
29
(
2017
).
12.
A. J.
Croxford
,
P. D.
Wilcox
,
B. W.
Drinkwater
, and
P. B.
Nagy
, “
The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue
,”
J. Acoust. Soc. Am.
126
,
EL117
EL122
(
2009
).
13.
G.
Tang
,
M.
Liu
,
L. J.
Jacobs
, and
J.
Qu
, “
Detecting localized plastic strain by a scanning collinear wave mixing method
,”
J. Nondestruct. Eval.
33
,
196
204
(
2014
).
14.
Z.
Chen
,
G.
Tang
,
Y.
Zhao
,
L. J.
Jacobs
, and
J.
Qu
, “
Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity
,”
J. Acoust. Soc. Am.
136
,
2389
2404
(
2014
).
15.
G. L.
Jones
and
D. R.
Kobett
, “
Interaction of ultrasonic waves in solid media
,”
J. Acoust. Soc. Am.
35
,
5
10
(
1963
).
16.
A.
Sharma
,
T.
Sirotiak
,
X.
Wang
,
P.
Taylor
,
P.
Angadi
, and
S.
Payne
, “
Portland limestone cement for reduced shrinkage and enhanced durability of concrete
,”
Mag. Concr. Res.
73
(
3
),
147
162
(
2019
).
17.
E. O.
Fanijo
,
J. T.
Kolawole
, and
A.
Almakrab
, “
Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects and evaluation test methods adopted in the United States
,”
Case Stud. Constr. Mater.
15
,
e00563
(
2021
).
18.
J.
Albrektsson
,
M.
Flansbjer
,
J. E.
Lindqvist
, and
R. E.
Jansson
, “Assessment of concrete structures after fire,” SP Report 2011:19 (SP Technical Research Institute of Sweden, 2011), ISSN 0284-5172.
19.
M. C.
Alonso
and
U.
Schneider
, “
Degradation reactions in concretes exposed to high temperatures
,” in
Physical Properties and Behaviour of High-Performance Concrete at High Temperature
, edited by
P.
Pimienta
,
R.
Jansson McNamee
, and
J. C.
Mindeguia
(
Springer
,
Cham
,
2019
), Vol. 29, RILEM State-of-the-Art Reports.
20.
Z.
Zhang
,
P. B.
Nagy
, and
W.
Hassan
, “
On the feasibility of nonlinear assessment of fatigue damage in hardened In718 specimens based on non-collinear shear wave mixing
,”
AIP Conf. Proc.
1706
,
060003
(
2016
).
21.
P. H.
Rogers
and
A. L.
van Buren
, “
An exact expression for the lommel-diffraction correction integral
,”
J. Acoust. Soc. Am.
55
,
724
728
(
1974
).
22.
K. H.
Matlack
,
J. Y.
Kim
,
L. J.
Jacobs
, and
J.
Qu
, “
Review of second harmonic generation measurement techniques for material state determination in metals
,”
J. Nondestruct. Eval.
34
,
273
(
2015
).
You do not currently have access to this content.