The Foreign Object Damage problem is considered as the damage tolerance statement for consecutive loading tests, which include the shock-wave loading (by explosive generator) of massive planar targets (aluminum alloy AlMg6) to provide a billet for the specimen machining with controlled damage that is the analogous material of the fan blades subjected to high-speed collision with solid particles. These samples were used to perform high cycle fatigue and very high cycle fatigue tests with the ultrasonic testing machine, which allows fatigue loading for 108–1010 cycles with an amplitude of up to several tens of micrometers and a frequency of 20 kHz. It is shown that the fatigue strength of AlMg6 alloy specimens pre-loaded by shock in the 109 cycle regime reduces by 24%. The fatigue damage-failure transition and crack initiation were studied by the amplitude–frequency analysis of higher harmonics associated with the influence of defects on the effective elastic properties. The structural study of the fracture surface for the specimens after consecutive loading was conducted using the profilometry data to identify the roughness scale invariants induced by defects for corresponding areas responsible for the staging of fatigue damage-failure transition. The scale invariants and corresponding lengths were used for the formulation of the generalized Paris law for the crack advance in the damaged material.

1.
2.
J. O.
Peters
and
R. O.
Ritchie
,
Eng. Fract. Mech.
67
,
193
(
2000
).
3.
S.
Spanrad
and
J.
Tong
,
Mater. Sci. Eng. A
528
,
2128
(
2011
).
4.
S.
Oakley
and
D.
Nowell
,
Int. J. Fatigue
29
,
69
(
2007
).
6.
D.
Nowell
,
P.
Duó
, and
I. F.
Stewart
,
Int. J. Fatigue
25
,
963
(
2003
).
7.
T.
Nicholas
,
High Cycle Fatigue: A Mechanics of Material Perspective
, 1st ed. (
Elsevier Ltd
,
2006
).
8.
C.
Froustey
and
J. L.
Latailade
,
Mater. Sci. Eng. A
500
,
155
(
2009
).
9.
O. B.
Naimark
, in
Advances in Multifield Theories of Continua with Substructure
, edited by
G.
Capriz
, and
P.
Mariano
(
Birkhäuser
,
Boston, MA
,
2004
), p.
75
.
10.
O. B.
Naimark
,
Phys. Mesomech.
6
,
39
(
2003
).
11.
O. B.
Naimark
and
S. V.
Uvarov
,
Int. J. Fracture
128
,
285
(
2004
).
12.
O. B.
Naimark
,
Int. J. Fracture
202
,
271
(
2016
).
13.
C.
Froustey
and
J.
Latailade
,
Int. J. Fatigue
30
,
908
(
2008
).
14.
V. A.
Oborin
,
Y. V.
Bayandin
,
D. A.
Bilalov
,
M. A.
Sokovikov
,
V. V.
Chudinov
, and
O. B.
Naimark
,
Phys. Mesomech.
22
,
141
(
2019
).
15.
C.
Bathias
and
P. C.
Paris
,
Gigacycle Fatigue in Mechanical Practice
(
Marcel Dekker Publisher Co.
,
New York
,
2005
).
16.
T.
Sakai
,
J. Solid Mech. Mater. Eng.
3
,
425
(
2009
).
17.
T.
Sakai
 et al.,
Int. J. Fatigue
93
,
339
(
2016
).
18.
D. L.
McDowell
,
Int. J. Fracture
80
,
103
(
1996
).
19.
20.
H.
Mughrabi
and
H. W.
Höppel
,
Int. J. Fatigue
32
,
1413
(
2010
).
22.
O.
Plekhov
,
A.
Prokhorov
,
O.
Naimark
,
M.
Narykova
,
A.
Kadomtsev
, and
V.
Betechtin
,
Eng. Fract. Mech.
167
,
273
(
2016
).
23.
M. V.
Bannikov
,
O. B.
Naimark
, and
V. A.
Oborin
,
Frat. Integrità Strutt.
35
,
50
(
2016
); available at https://www.fracturae.com/index.php/fis/article/view/1627.
24.
M.
Bannikov
,
V.
Oborin
, and
O.
Naimark
,
AIP Conf. Proc.
1623
,
55
(
2014
).
25.
C.
Bathias
,
Fatigue Fract. Eng. Mater. Struct.
22
,
559
(
1999
).
26.
H.
Mughrabi
, and
H. W.
Höppel
, “Cyclic deformation and fatigue properties of very fine-grained metals and alloys,”
Int. J. Fatigue
32
(9),
1413
–1427 (
2010
).
27.
T.
Antoun
,
L.
Seaman
,
D. R.
Curran
,
G. I.
Kanel
,
S. V.
Razorenov
, and
A. V.
Utkin
,
Spall Fracture
(
Springer
,
2003
), p.
404
.
28.
H. J.
Cantrell
and
T. W.
William
,
Int. J. Fatigue
23
,
487
(
2001
).
29.
A.
Kumar
,
C. J.
Torbe
,
J. W.
Jones
, and
T. M.
Pollock
,
J. Appl. Phys.
106
,
024904
(
2009
).
30.
31.
O.
Naimark
,
V.
Oborin
,
M.
Bannikov
, and
D.
Ledon
,
Materials
14
,
2554
(
2021
).
32.
O.
Naimark
,
Y.
Bayandin
,
S.
Uvarov
,
I.
Bannikova
, and
N.
Saveleva
,
Acta Mech.
232
,
1943
(
2021
).
33.
C.
Basaran
,
Introduction to Unified Mechanics Theory with Applications
(
Springer International Publishing
,
2021
).
34.
J. S.
Langer
,
Phys. Rev. E
70
,
041502
(
2004
).
35.
D. A.
Bilalov
,
Y. V.
Bayandin
, and
O. B.
Naimark
,
J. Appl. Mech. Tech. Phys.
60
,
1209
(
2019
).
36.
T. Y.
Yakovleva
and
L. E.
Matokhnyuk
,
Strength Mater.
36
,
442
(
2004
).
37.
C.
Froustey
,
O.
Naimark
,
M.
Bannikov
, and
V.
Oborin
,
Eur. J. Mech. A Solids
29
,
1008
(
2010
).
38.
E.
Bouchaud
,
J. Phys.: Condens. Matter
9
,
4319
(
1997
).
39.
V.
Oborin
,
M.
Bannikov
,
O.
Naimark
, and
T.
Palin-Luc
,
Tech. Phys. Lett.
36
,
1061
(
2010
).
40.
I.
Marines-Garcia
,
P. C.
Paris
,
H.
Tada
, and
C.
Bathias
,
Int. J. Fatigue
29
,
2072
(
2007
).
41.
V.
Oborin
,
M.
Bannikov
,
O.
Naimark
, and
C.
Froustey
,
Tech. Phys. Lett.
37
,
241
(
2011
).
42.
O.
Naimark
,
Frat. Integrità Strutt.
13
,
272
(
2019
).
You do not currently have access to this content.