A large number of simulation models have been proposed over the years to mimic the electrical behavior of memristive devices. The models are based either on sophisticated mathematical formulations that do not account for physical and chemical processes responsible for the actual switching dynamics or on multi-physical spatially resolved approaches that include the inherent stochastic behavior of real-world memristive devices but are computationally very expensive. In contrast to the available models, we present a computationally inexpensive and robust spatially 1D model for simulating interface-type memristive devices. The model efficiently incorporates the stochastic behavior observed in experiments and can be easily transferred to circuit simulation frameworks. The ion transport, responsible for the resistive switching behavior, is modeled using the kinetic cloud-in-a-cell scheme. The calculated current–voltage characteristics obtained using the proposed model show excellent agreement with the experimental findings.

1.
G. E.
Moore
, “
Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.
,”
IEEE Solid-State Circuits Soc. Newsl.
11
,
33
35
(
2006
).
2.
M. M.
Waldrop
, “
More than Moore
,”
Nature
530
,
144
(
2016
).
3.
IRDS
,
International Roadmap for Devices and Systems, Beyond CMOS 2021 Update
(
IEEE
,
2021
).
4.
L.
Chua
, “
Resistance switching memories are memristors
,”
Appl. Phys. A
102
,
765
783
(
2011
).
5.
D.
Ielmini
and
R.
Waser
,
Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications
(
John Wiley & Sons, Ltd.
,
2016
).
6.
N.
Du
,
H.
Schmidt
, and
I.
Polian
, “
Low-power emerging memristive designs towards secure hardware systems for applications in internet of things
,”
Nano Mater. Sci.
3
,
186
204
(
2021
).
7.
R. A.
John
,
N.
Shah
,
S. K.
Vishwanath
,
S. E.
Ng
,
B.
Febriansyah
,
M.
Jagadeeswararao
,
C.-H.
Chang
,
A.
Basu
, and
N.
Mathews
, “
Halide perovskite memristors as flexible and reconfigurable physical unclonable functions
,”
Nat. Commun.
12
,
3681
(
2021
).
8.
J.
Jung
,
D.
Bae
,
S.
Kim
, and
H.-D.
Kim
, “
Self-rectifying resistive switching phenomena observed in Ti/ZrN/Pt/p-Si structures for crossbar array memory applications
,”
Appl. Phys. Lett.
118
,
112106
(
2021
).
9.
X.
Xu
,
H.
Lv
,
H.
Liu
,
T.
Gong
,
G.
Wang
,
M.
Zhang
,
Y.
Li
,
Q.
Liu
,
S.
Long
, and
M.
Liu
, “
Superior retention of low-resistance state in conductive bridge random access memory with single filament formation
,”
IEEE Electron Device Lett.
36
,
129
131
(
2015
).
10.
Y.
Chen
and
C.
Petti
, “ReRAM technology evolution for storage class memory application,” in 2016 46th European Solid-State Device Research Conference (ESSDERC) (IEEE, 2016), pp. 432–435.
11.
M.
Hansen
,
F.
Zahari
,
M.
Ziegler
, and
H.
Kohlstedt
, “
Double-barrier memristive devices for unsupervised learning and pattern recognition
,”
Front. Neurosci.
11
,
91
(
2017
).
12.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
, “
Memristive devices for computing
,”
Nat. Nanotechnol.
8
,
13
24
(
2013
).
13.
M. A.
Zidan
,
J. P.
Strachan
, and
W. D.
Lu
, “
The future of electronics based on memristive systems
,”
Nat. Electron.
1
,
22
29
(
2018
).
14.
P.
Lin
,
C.
Li
,
Z.
Wang
,
Y.
Li
,
H.
Jiang
,
W.
Song
,
M.
Rao
,
Y.
Zhuo
,
N. K.
Upadhyay
,
M.
Barnell
,
Q.
Wu
,
J. J.
Yang
, and
Q.
Xia
, “
Three-dimensional memristor circuits as complex neural networks
,”
Nat. Electron.
3
,
225
232
(
2020
).
15.
I.
Valov
,
R.
Waser
,
J. R.
Jameson
, and
M. N.
Kozicki
, “
Electrochemical metallization memories—Fundamentals, applications, prospects
,”
Nanotechnology
22
,
254003
(
2011
).
16.
S.
Menzel
,
P.
Kaupmann
, and
R.
Waser
, “
Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations
,”
Nanoscale
7
,
12673
12681
(
2015
).
17.
S.
Dirkmann
,
M.
Ziegler
,
M.
Hansen
,
H.
Kohlstedt
,
J.
Trieschmann
, and
T.
Mussenbrock
, “
Kinetic simulation of filament growth dynamics in memristive electrochemical metallization devices
,”
J. Appl. Phys.
118
,
214501
(
2015
).
18.
S.
Dirkmann
and
T.
Mussenbrock
, “
Resistive switching in memristive electrochemical metallization devices
,”
AIP Adv.
7
,
065006
(
2017
).
19.
S.
Dirkmann
,
J.
Kaiser
,
C.
Wenger
, and
T.
Mussenbrock
, “
Filament growth and resistive switching in hafnium oxide memristive devices
,”
ACS Appl. Mater. Interfaces
10
,
14857
14868
(
2018
).
20.
M.
Hansen
,
M.
Ziegler
,
L.
Kolberg
,
R.
Soni
,
S.
Dirkmann
,
T.
Mussenbrock
, and
H.
Kohlstedt
, “
A double barrier memristive device
,”
Sci. Rep.
5
,
13753
(
2015
).
21.
T.
You
,
N.
Du
,
S.
Slesazeck
,
T.
Mikolajick
,
G.
Li
,
D.
Bürger
,
I.
Skorupa
,
H.
Stöcker
,
B.
Abendroth
,
A.
Beyer
,
K.
Volz
,
O. G.
Schmidt
, and
H.
Schmidt
, “
Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO3 memristors
,”
ACS Appl. Mater. Interfaces
6
,
19758
19765
(
2014
).
22.
S.
Park
,
S.
Klett
,
T.
Ivanov
,
A.
Knauer
,
J.
Doell
, and
M.
Ziegler
, “
Engineering method for tailoring electrical characteristics in TiN/TiOx/HfOx/Au bi-layer oxide memristive devices
,”
Front. Nanotechnol.
3
,
670762
(
2021
).
23.
N.
Onofrio
,
D.
Guzman
, and
A.
Strachan
, “
Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells
,”
Nat. Mater.
14
,
440
446
(
2015
).
24.
E.
Solan
,
S.
Dirkmann
,
M.
Hansen
,
D.
Schroeder
,
H.
Kohlstedt
,
M.
Ziegler
,
T.
Mussenbrock
, and
K.
Ochs
, “
An enhanced lumped element electrical model of a double barrier memristive device
,”
J. Phys. D: Appl. Phys.
50
,
195102
(
2017
).
25.
S.
Ambrogio
,
S.
Balatti
,
D. C.
Gilmer
, and
D.
Ielmini
, “
Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches
,”
IEEE Trans. Electron Devices
61
,
2378
2386
(
2014
).
26.
A.
Hardtdegen
,
C.
La Torre
,
F.
Cüppers
,
S.
Menzel
,
R.
Waser
, and
S.
Hoffmann-Eifert
, “
Improved switching stability and the effect of an internal series resistor in HfO2/TiOx bilayer ReRAM cells
,”
IEEE Trans. Electron Devices
65
,
3229
3236
(
2018
).
27.
C.
Bengel
,
A.
Siemon
,
F.
Cüppers
,
S.
Hoffmann-Eifert
,
A.
Hardtdegen
,
M.
von Witzleben
,
L.
Hellmich
,
R.
Waser
, and
S.
Menzel
, “
Variability-aware modeling of filamentary oxide-based bipolar resistive switching cells using spice level compact models
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
67
,
4618
4630
(
2020
).
28.
S.
Dirkmann
,
M.
Hansen
,
M.
Ziegler
,
H.
Kohlstedt
, and
T.
Mussenbrock
, “
The role of ion transport phenomena in memristive double barrier devices
,”
Sci. Rep.
6
,
35686
(
2016
).
29.
E.
Abbaspour
,
S.
Menzel
, and
C.
Jungemann
, “KMC simulation of the electroforming, set and reset processes in redox-based resistive switching devices,” in 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE, 2016), pp. 141–144.
30.
M.
Schie
,
M. P.
Müller
,
M.
Salinga
,
R.
Waser
, and
R. A.
De Souza
, “
Ion migration in crystalline and amorphous HfOx
,”
J. Chem. Phys.
146
,
094508
(
2017
).
31.
S. E.
Laux
, “
On particle-mesh coupling in Monte Carlo semiconductor device simulation
,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
15
,
1266
1277
(
1996
).
32.
J.
Strobel
,
M.
Hansen
,
S.
Dirkmann
,
K. K.
Neelisetty
,
M.
Ziegler
,
G.
Haberfehlner
,
R.
Popescu
,
G.
Kothleitner
,
V. S. K.
Chakravadhanula
,
C.
Kübel
,
H.
Kohlstedt
,
T.
Mussenbrock
, and
L.
Kienle
, “
In depth nano spectroscopic analysis on homogeneously switching double barrier memristive devices
,”
J. Appl. Phys.
121
,
245307
(
2017
).
33.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Taylor & Francis, Inc.
,
USA
,
1988
).
34.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
Taylor & Francis
,
New York
,
2005
).
35.
P. G.
Bruce
, Solid State Electrochemistry, Chemistry of Solid State Materials (Cambridge University Press, 1994), Chap. 3.
36.
R.
Meyer
,
L.
Schloss
,
J.
Brewer
,
R.
Lambertson
,
W.
Kinney
,
J.
Sanchez
, and
D.
Rinerson
, “Oxide dual-layer memory element for scalable non-volatile cross-point memory technology,” in Proceedings: 9th Annual Non-Volatile Memory Technology Symposium, NVMTS (IEEE, 2008).
37.
F.
Spitzer
,
Principles of Random Walk
, 2nd ed. (
Springer
,
New York
,
2001
).
38.
R.
Naous
,
M.
Al-Shedivat
, and
K. N.
Salama
, “
Stochasticity modeling in memristors
,”
IEEE Trans. Nanotechnol.
15
,
15
28
(
2016
).
39.
J. G.
Simmons
, “
Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film
,”
J. Appl. Phys.
34
,
1793
1803
(
1963
).
40.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons, Ltd.
,
2007
).
41.
M. S.
Tyagi
, “Physics of Schottky barrier junctions,” in Metal-Semiconductor Schottky Barrier Junctions and Their Applications, edited by B. L. Sharma (Springer US, Boston, MA, 1984), pp. 1–60.
42.
C.
Funck
,
C.
Bäumer
,
S.
Wiefels
,
T.
Hennen
,
R.
Waser
,
S.
Hoffmann-Eifert
,
R.
Dittmann
, and
S.
Menzel
, “
Comprehensive model for the electronic transport in Pt/SrTiO3 analog memristive devices
,”
Phys. Rev. B
102
,
035307
(
2020
).
43.
M.
Maestro-Izquierdo
,
M. B.
Gonzalez
,
F.
Campabadal
,
J.
Suñé
, and
E.
Miranda
, “
A new perspective towards the understanding of the frequency-dependent behavior of memristive devices
,”
IEEE Electron Device Lett.
42
,
565
568
(
2021
).
You do not currently have access to this content.