This work investigates the impact of mobility degradation on endurance fatigue of a ferroelectric field-effect-transistor (FeFET) with the TiN/Hf0.5Zr0.5O2/SiOx/Si (MFIS) gate structure. We use the split capacitance–voltage (CV) method to study the carrier mobility during the program/erase cycling. We find that significant mobility degradation occurs with increasing program/erase cycle and further deteriorates endurance characteristics. Our work provides mobility degradation as another endurance fatigue factor of FeFET besides charge trapping and trap generation, which is helpful for endurance improvement.

1.
S.
Mueller
,
J.
Muller
,
R.
Hoffmann
,
E.
Yurchuk
,
T.
Schlosser
,
R.
Boschke
,
J.
Paul
,
M.
Goldbach
,
T.
Herrmann
,
A.
Zaka
,
U.
Schroder
, and
T.
Mikolajick
, “
From MFM capacitors toward ferroelectric transistors: Endurance and disturb characteristics of HfO2-based FeFET devices
,”
IEEE Trans. Electron Devices
60
,
4199
(
2013
).
2.
S.
Dünkel
,
M.
Trentzsch
,
R.
Richter
,
P.
Moll
,
C.
Fuchs
,
O.
Gehring
,
M.
Majer
,
S.
Wittek
,
B.
Müller
,
T.
Melde
,
H.
Mulaosmanovic
,
S.
Slesazeck
,
S.
Müller
,
J.
Ocker
,
M.
Noack
,
D. A.
Löhr
,
P.
Polakowski
,
J.
Müller
,
T.
Mikolajick
,
J.
Höntschel
,
B.
Rice
,
J.
Pellerin
, and
S.
Beyer
, “
A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond
,” in
2017 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2017
), p.
19.7.1
.
3.
M.
Trentzsch
,
S.
Flachowsky
,
R.
Richter
,
J.
Paul
,
B.
Reimer
,
D.
Utess
,
S.
Jansen
,
H.
Mulaosmanovic
,
S.
Müller
,
S.
Slesazeck
,
J.
Ocker
,
M.
Noack
,
J.
Müller
,
P.
Polakowski
,
J.
Schreiter
,
S.
Beyer
,
T.
Mikolajick
, and
B.
Rice
, “
A 28 nm HKMG super low power embedded NVM technology based on ferroelectric FETs
,” in
2016 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2016
), p.
11.5.1
.
4.
T.
Schenk
,
M.
Pešić
,
S.
Slesazeck
,
U.
Schroeder
, and
T.
Mikolajick
, “
Memory technology—a primer for material scientists
,”
Rep. Prog. Phys.
83
,
086501
(
2020
).
5.
E.
Yurchuk
,
S.
Mueller
,
D.
Martin
,
S.
Slesazeck
,
U.
Schroeder
,
T.
Mikolajick
,
J.
Müller
,
J.
Paul
,
R.
Hoffmann
,
J.
Sundqvist
,
T.
Schlösser
,
R.
Boschke
,
R. v.
Bentum
, and
M.
Trentzsch
, “
Origin of the endurance degradation in the novel HfO2-based 1 T ferroelectric non-volatile memories
,” in
2014 IEEE International Reliability Physics Symposium
(IEEE,
2014
), p.
2E.5.1
.
6.
J.
Muller
,
P.
Polakowski
,
S.
Muller
,
H.
Mulaosmanovic
,
J.
Ocker
,
T.
Mikolajick
,
S.
Slesazeck
,
S.
Muller
,
J.
Ocker
,
T.
Mikolajick
,
S.
Flachowsky
, and
M.
Trentzsch
, “
High endurance strategies for hafnium oxide based ferroelectric field effect transistor
,” in
2016 16th Non-Volatile Memory Technology Symposium (NVMTS)
(IEEE,
2016
).
7.
J.
Müller
,
E.
Yurchuk
,
T.
Schlösser
,
J.
Paul
,
R.
Hoffmann
,
S.
Müller
,
D.
Martin
,
S.
Slesazeck
,
P.
Polakowski
,
J.
Sundqvist
,
M.
Czernohorsky
,
K.
Seidel
,
P.
Kücher
,
R.
Boschke
,
M.
Trentzsch
,
K.
Gebauer
,
U.
Schröder
, and
T.
Mikolajick
, “
Ferroelectricity in HfO₂ enables nonvolatile data storage in 28 nm HKMG
,” in
2012 Symposium on VLSI Technology (VLSIT)
(IEEE,
2012
), p.
25
.
8.
M.
Pešić
,
F. P. G.
Fengler
,
L.
Larcher
,
A.
Padovani
,
T.
Schenk
,
E. D.
Grimley
,
X.
Sang
,
J. M.
LeBeau
,
S.
Slesazeck
,
U.
Schroeder
, and
T.
Mikolajick
, “
Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors
,”
Adv. Funct. Mater.
26
,
4601
(
2016
).
9.
M.
Pesic
,
A.
Padovani
,
S.
Slcsazeck
,
T.
Mikolajick
, and
L.
Larcher
, “
Deconvoluting charge trapping and nucleation interplay in FeFETs: Kinetics and Reliability
,” in
2018 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2018
), p.
25.1.1
.
10.
H.
Mulaosmanovic
,
S.
Slesazeck
,
J.
Ocker
,
M.
Pesic
,
S.
Muller
,
S.
Flachowsky
,
J.
Müller
,
P.
Polakowski
,
J.
Paul
,
S.
Jansen
,
S.
Kolodinski
,
C.
Richter
,
S.
Piontek
,
T.
Schenk
,
A.
Kersch
,
C.
Kunneth
,
R. v.
Bentum
,
U.
Schroder
, and
T.
Mikolajick
, “
Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells
,” in
2015 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2015
), p.
26.8.1
.
11.
T.
Ali
,
P.
Polakowski
,
S.
Riedel
,
T.
Büttner
,
T.
Kämpfe
,
M.
Rudolph
,
B.
Pätzold
,
K.
Seidel
,
D.
Löhr
,
R.
Hoffmann
,
M.
Czernohorsky
,
K.
Kühnel
,
P.
Steinke
,
J.
Calvo
,
K.
Zimmermann
, and
J.
Müller
, “
High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty
,”
IEEE Trans. Electron Devices
65
,
3769
(
2018
).
12.
A. J.
Tan
,
Y. H.
Liao
,
L. C.
Wang
,
N.
Shanker
,
J. H.
Bae
,
C.
Hu
, and
S.
Salahuddin
, “
Ferroelectric HfO2 memory transistors with high-κ interfacial layer and write endurance exceeding 1010 cycles
,”
IEEE Electron Device Lett.
42
,
994
(
2021
).
13.
M. C.
Nguyen
,
S.
Kim
,
K.
Lee
,
J. Y.
Yim
,
R.
Choi
, and
D.
Kwon
, “
Wakeup-free and endurance-robust ferroelectric field-effect transistor memory using high pressure annealing
,”
IEEE Electron Device Lett.
42
,
295
(
2021
).
14.
N.
Gong
and
T. P.
Ma
, “
A study of endurance issues in HfO2-based ferroelectric field effect transistors: Charge trapping and trap generation
,”
IEEE Electron Device Lett.
39
,
15
(
2018
).
15.
S.
Deng
,
Z.
Jiang
,
S.
Dutta
,
H.
Ye
,
W.
Chakraborty
,
S.
Kurinec
,
S.
Datta
, and
K.
Ni
, “
Examination of the Interplay Between Polarization Switching and Charge Trapping in Ferroelectric FET
,” in
2020 IEEE International Electron Devices Meeting (IEDM)
(IEEE, 2020), p. 4.4.1.
16.
E.
Yurchuk
,
J.
Müller
,
S.
Müller
,
J.
Paul
,
M.
Pešić
,
R.
van Bentum
,
U.
Schroeder
, and
T.
Mikolajick
, “
Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories
,”
IEEE Trans. Electron Devices
63
,
3501
(
2016
).
17.
S.
Deng
,
Z.
Liu
,
X.
Li
,
T. P.
Ma
, and
K.
Ni
, “
Guidelines for ferroelectric FET reliability optimization: Charge matching
,”
IEEE Electron Device Lett.
41
,
1348
(
2020
).
18.
K.
Ni
,
P.
Sharma
,
J.
Zhang
,
M.
Jerry
,
J. A.
Smith
,
K.
Tapily
,
R.
Clark
,
S.
Mahapatra
, and
S.
Datta
, “
Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance
,”
IEEE Trans. Electron Devices
65
,
2461
(
2018
).
19.
C. Y.
Chan
,
K. Y.
Chen
,
H. K.
Peng
, and
Y. H.
Wu
, “
FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON
,” in
2020 IEEE Symposium on VLSI Technology
(IEEE,
2020
), p.
1
.
20.
Y.-H.
Chen
,
C.-J.
Su
,
T.-H.
Yang
,
C.
Hu
, and
T.-L.
Wu
, “
Improved TDDB reliability and interface states in 5-nm Hf0.5Zr0.5O2 ferroelectric technologies using NH3 plasma and microwave annealing
,”
IEEE Trans. Electron Devices
67
,
1581
(
2020
).
21.
Y.-H.
Chen
,
C.-J.
Su
,
C.
Hu
, and
T.-L.
Wu
, “
Effects of annealing on ferroelectric hafnium–zirconium–oxide-based transistor technology
,”
IEEE Electron Device Lett.
40
,
467
(
2019
).
22.
K.
Toprasertpong
,
K.
Tahara
,
T.
Fukui
,
Z. Y.
Lin
,
K.
Watanabe
,
M.
Takenaka
, and
S.
Takagi
, “
Improved ferroelectric/semiconductor interface properties in Hf0.5Zr0.5O2 ferroelectric FETs by low-temperature annealing
,”
IEEE Electron Device Lett.
41
,
1588
(
2020
).
23.
S.
Oh
,
J.
Song
,
I. K.
Yoo
, and
H.
Hwang
, “
Improved endurance of HfO2-based metal- ferroelectric-insulator-silicon structure by high-pressure hydrogen annealing
,”
IEEE Electron Device Lett.
40
,
1092
(
2019
).
24.
H.
Mulaosmanovic
,
E. T.
Breyer
,
T.
Mikolajick
, and
S.
Slesazeck
, “
Recovery of cycling endurance failure in ferroelectric FETs by self-heating
,”
IEEE Electron Device Lett.
40
,
216
(
2019
).
25.
W.
Huang
,
H.
Zhu
,
Y.
Zhang
,
J.
Xiang
,
J.
Li
,
H.
Yang
,
K.
Jia
, and
Z.
Wu
, “
HfO2-based ferroelectric field-effect-transistor with large memory window and good synaptic behavior
,”
ECS J. Solid State Sci. Technol.
10
, 065012 (
2021
).
26.
W.
Xiao
,
C.
Liu
,
Y.
Peng
,
S.
Zheng
,
Q.
Feng
,
C.
Zhang
,
J.
Zhang
,
Y.
Hao
,
M.
Liao
, and
Y.
Zhou
, “
Memory window and endurance improvement of Hf0.5Zr0.5O2-based FeFETs with ZrO2 seed layers characterized by fast voltage pulse measurements
,”
Nanoscale Res. Lett.
14
,
254
(
2019
).
27.
H.
Bae
,
S. G.
Nam
,
T.
Moon
,
Y.
Lee
,
S.
Jo
,
D. H.
Choe
,
S.
Kim
,
K. H.
Lee
, and
J.
Heo
, “
Sub-ns polarization switching in 25 nm FE FinFET toward post CPU and spatial-energetic mapping of traps for enhanced endurance
,” in
2020 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2020
), p.
31.3.1
.
28.
S.-i.
Takagi
and
M.
Takayanagi
, “
Experimental evidence of inversion-layer mobility lowering in ultrathin gate oxide metal-oxide-semiconductor field-effect-transistors with direct tunneling current
,”
Jpn. J. Appl. Phys.
41
,
2348
(
2002
).
29.
S.
Zhao
,
F.
Tian
,
H.
Xu
,
J.
Xiang
,
T.
Li
,
J.
Chai
,
J.
Duan
,
K.
Han
,
X.
Wang
,
W.
Wang
, and
T.
Ye
, “
Experimental extraction and simulation of charge trapping during endurance of FeFET with TiN/HfZrO/SiO2/Si (MFIS) gate structure
,”
IEEE Trans. Electron Devices
69
,
1561
(
2021
).
30.
F.
Tian
,
S.
Zhao
,
H.
Xu
,
J.
Xiang
,
T.
Li
,
W.
Xiong
,
J.
Duan
,
J.
Chai
,
K.
Han
,
X.
Wang
,
W.
Wang
, and
T.
Ye
, “
Impact of interlayer and ferroelectric materials on charge trapping during endurance fatigue of FeFET With TiN/HfxZr1−xO2/interlayer/Si (MFIS) gate structure
,”
IEEE Trans. Electron Devices
68
,
5872
(
2021
).
31.
D.
Esseni
,
P.
Palestri
, and
L.
Selmi
,
Nanoscale MOS Transistors: Semi-Classical Transport and Applications
(
Cambridge University Press
,
Cambridge
,
2011
).
You do not currently have access to this content.