The bidirectional 3ω method is an electrothermal technique that is commonly used to obtain the thermal conductivity of materials such as liquids, biological samples, and pastes. In this work, an epoxy-based adhesive was filled with monodisperse 10 μm polymethyl methacrylate spheres coated with silver thin films (AgPS), such that a metallic network that dominated the thermal transport was formed through the composite. The bidirectional 3ω method was used to obtain the thermal conductivity of the conductive adhesive at different volume fractions of AgPS. For 50 vol.% AgPS, corresponding to 3.4 vol.% silver, the thermal conductivity was 2.03±0.21 W m−1 K−1. The results show that the thermal conductivity is strongly correlated with the AgPS volume fraction, while maintaining a volume fraction of silver far below the commercial silver paste, which has typical filler fractions of 40 vol.% silver. The results of this work were compared to thermal measurements of the same material by other techniques, and advantages and disadvantages of the methods were finally discussed.

1.
H.
Chen
,
V. V.
Ginzburg
,
J.
Yang
,
Y.
Yang
,
W.
Liu
,
Y.
Huang
,
L.
Du
, and
B.
Chen
, “
Thermal conductivity of polymer-based composites: Fundamentals and applications
,”
Prog. Polym. Sci. Top. Vol. Hybrids
59
,
41
85
(
2016
).
2.
Y.
Cui
,
M.
Li
, and
Y.
Hu
, “
Emerging interface materials for electronics thermal management: Experiments, modeling, and new opportunities
,”
J. Mater. Chem. C
8
,
10568
10586
(
2020
).
3.
H. P.
de Bock
,
D.
Huitink
,
P.
Shamberger
,
J. S.
Lundh
,
S.
Choi
,
N.
Niedbalski
, and
L.
Boteler
, “
A system to package perspective on transient thermal management of electronics
,”
J. Electron. Packag.
142
,
041111
(
2020
).
4.
J. C.
Kim
,
Z.
Ren
,
A.
Yuksel
,
E. M.
Dede
,
P. R.
Bandaru
,
D.
Oh
, and
J.
Lee
, “
Recent advances in thermal metamaterials and their future applications for electronics packaging
,”
J. Electron. Packag.
143
,
010801
(
2021
).
5.
A. L.
Moore
and
L.
Shi
, “
Emerging challenges and materials for thermal management of electronics
,”
Mater. Today
17
,
163
174
(
2014
).
6.
H.
Ma
,
B.
Gao
,
M.
Wang
,
Z.
Yuan
,
J.
Shen
,
J.
Zhao
, and
Y.
Feng
, “
Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review
,”
J. Mater. Sci.
56
,
1064
1086
(
2021
).
7.
R.
Aradhana
,
S.
Mohanty
, and
S. K.
Nayak
, “
A review on epoxy-based electrically conductive adhesives
,”
Int. J. Adhes. Adhes.
99
,
102596
(
2020
).
8.
H. G.
Chae
and
S.
Kumar
, “
Making strong fibers
,”
Science
319
,
908
909
(
2008
).
9.
Advanced Flip Chip Packaging, edited by H.-M. Tong, Y.-S. Lai, and C. Wong (Springer US, Boston, MA, 2013).
10.
M.
Inoue
,
H.
Muta
,
T.
Maekawa
,
S.
Yamanaka
, and
K.
Suganuma
, “
Physical factors determining thermal conductivities of isotropic conductive adhesives
,”
J. Electron. Mater.
38
,
430
437
(
2009
).
11.
H.-V.
Nguyen
,
E.
Andreassen
,
H.
Kristiansen
, and
K. E.
Aasmundtveit
, “
Die shear testing of a novel isotropic conductive adhesive–epoxy filled with metal-coated polymer spheres
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
3
,
1084
1093
(
2013
).
12.
S.
Jain
, “Isotropically conductive adhesive filled with silver metalised polymer spheres,” Ph.D. thesis (Loughborough University, United Kingdom, 2016).
13.
H.-V.
Nguyen
,
H.
Kristiansen
,
J.
Gakkestad
,
R.
Johannessen
,
N.
Høivik
, and
K. E.
Aasmundtveit
, “Spherical polymer particles in isotropic conductive adhesives a study on rheology and mechanical aspects,” in 3rd Electronics System Integration Technology Conference ESTC (IEEE, 2010), pp. 1–6.
14.
H.-V.
Nguyen
,
H.
Kristiansen
,
R.
Johannessen
,
E.
Andreassen
,
A.
Larsson
, and
K. E.
Aasmundtveit
, “Temperature dependence of mechanical properties of isotropic conductive adhesive filled with metal coated polymer spheres,” in IEEE 61st Electronic Components and Technology Conference (ECTC) (IEEE, 2011).
15.
H.-V.
Nguyen
,
J.
He
,
T.
Helland
,
H.
Kristiansen
, and
K. E.
Aasmundtveit
, “
Electrical characterization of individual metal-coated polymer spheres used in isotropic conductive adhesives
,”
J. Appl. Polym. Sci.
133
, 43764–43773 (
2016
).
16.
S.
Jain
,
D.
Whalley
,
M.
Cottrill
,
H.
Kristiansen
,
K.
Redford
,
C.
Nilsen
,
T.
Helland
, and
C.
Liu
, “Electrical properties of an isotropic conductive adhesive filled with silver coated polymer spheres,” in 18th European Microelectronics Packaging Conference (IEEE, 2011), pp. 1–7.
17.
S.
Jain
,
D. C.
Whalley
,
M.
Cottrill
,
T.
Helland
,
H.
Kristiansen
,
K.
Redford
, and
C.
Liu
, “The effect of coating thickness on the electrical performance of novel isotropic conductive adhesives prepared using metallised polymer micro-spheres,” in 2013 IEEE 63rd Electronic Components and Technology Conference (IEEE, 2013), pp. 796–802.
18.
H.-V.
Nguyen
,
K. E.
Aasmundtveit
,
H.
Kristiansen
, and
T.
Helland
, “
An overview of isotropic conductive adhesives filled with metal-coated polymer spheres
,”
International Symposium on Microelectronics
2013
,
000200
000207
(
2013
).
19.
J.
Gakkestad
,
P.
Dalsjø
,
H.
Kristiansen
,
R.
Johannessen
, and
M. M. V.
Taklo
, “
Use of conductive adhesive for MEMS interconnection in ammunition fuze applications
,”
J. Micro/Nanolithogr., MEMS, MOEMS
9
,
041108
(
2010
).
20.
J.
Gakkestad
,
Z.
Li
,
T.
Helland
, and
C. P.
Wong
, “Thermo-mechanical properties of isotropic conductive adhesive filled with Metallized Polymer Spheres,” in 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013) (IEEE, 2013), pp. 213–218.
21.
H.
Kristiansen
,
K.
Redford
,
S.
Helland
,
E.
Kalland
,
N. H.
Høglund
,
M. A.
Ras
,
C.
Grosse
,
B.
Hay
,
L.
Ramiandrisoa
,
G.
Davée
,
S.
Gomés
, and
S. R.
Pettersen
, “Thermal conduction in novel isotropic conductive adhesive,” in 2017 23rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC) (IEEE, 2017), pp. 1–5, iSSN: 2474-1523.
22.
S. R.
Pettersen
,
S.
Nagao
,
H.
Kristiansen
,
S.
Helland
,
J.
Njagi
,
K.
Suganuma
,
Z.
Zhang
, and
J.
He
, “
Investigation of thermal transport in polymer composites with percolating networks of silver thin films by the flash diffusivity method
,”
J. Appl. Phys.
121
,
025101
(
2017
).
23.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
,”
Rev. Sci. Instrum.
61
,
802
808
(
1990
).
24.
D. G.
Cahill
, “
Erratum: “Thermal conductivity measurement from 30 to 750 K: The 3ω method” [Rev. Sci. Instrum. 61, 802 (1990)]
,”
Rev. Sci. Instrum.
73
,
3701
(
2002
).
25.
T.
Borca-Tasciuc
and
G.
Chen
, “Experimental techniques for thin-film thermal conductivity characterization,” in Thermal Conductivity: Theory, Properties, and Applications, Physics of Solids and Liquids, edited by T. M. Tritt (Springer US, Boston, MA, 2004), pp. 205–237.
26.
J.
Moon
,
K.
Weaver
,
B.
Feng
,
H.
Gi Chae
,
S.
Kumar
,
J.-B.
Baek
, and
G. P.
Peterson
, “
Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method
,”
Rev. Sci. Instrum.
83
,
016103
(
2012
).
27.
F.
Chen
,
J.
Shulman
,
Y.
Xue
,
C. W.
Chu
, and
G. S.
Nolas
, “
Thermal conductivity measurement under hydrostatic pressure using the 3ω method
,”
Rev. Sci. Instrum.
75
,
4578
4584
(
2004
).
28.
D.-W.
Oh
,
A.
Jain
,
J. K.
Eaton
,
K. E.
Goodson
, and
J. S.
Lee
, “
Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method
,”
Int. J. Heat Fluid Flow
29
,
1456
1461
(
2008
).
29.
M. L.
Bauer
and
P. M.
Norris
, “
General bidirectional thermal characterization via the 3ω technique
,”
Rev. Sci. Instrum.
85
,
064903
(
2014
).
30.
R. M.
Rodríguez-Laguna
,
A.
Castro-Alvarez
,
M.
Sledzinska
,
J.
Maire
,
F.
Costanzo
,
B.
Ensing
,
M.
Pruneda
,
P.
Ordejón
,
C. M. S.
Torres
,
P.
Gómez-Romero
, and
E.
Chávez-Ángel
, “
Mechanisms behind the enhancement of thermal properties of graphene nanofluids
,”
Nanoscale
10
,
15402
15409
(
2018
).
31.
S. D.
Lubner
,
J.
Choi
,
G.
Wehmeyer
,
B.
Waag
,
V.
Mishra
,
H.
Natesan
,
J. C.
Bischof
, and
C.
Dames
, “
Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues
,”
Rev. Sci. Instrum.
86
,
014905
(
2015
).
32.
C.
Grosse
,
M. A.
Ras
,
A.
Varpula
,
K.
Grigoras
,
D.
May
,
M.
Prunnila
, and
B.
Wunderle
, “Thermal characterization of thermal interface materials using the three-omega method,” in 2018 7th Electronic System-Integration Technology Conference (ESTC) (IEEE, 2018), pp. 1–4.
33.
C.
Dames
, “
Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods
,”
Annu. Rev. Heat Transfer
16
,
7
(
2013
).
34.
T.
Borca-Tasciuc
,
A. R.
Kumar
, and
G.
Chen
, “
Data reduction in 3ω method for thin-film thermal conductivity determination
,”
Rev. Sci. Instrum.
72
,
2139
2147
(
2001
).
35.
G.
Avenue
and
W.
Chester
, “SPI supplies® brand quartz slides and cover slips.”
36.
M.
Bazilchuk
,
T.
Sumigawa
,
T.
Kitamura
,
Z.
Zhang
,
H.
Kristiansen
, and
J.
He
, “
Contact area measurement of micron-sized metal-coated polymer particles under compression
,”
Int. J. Mech. Sci.
165
,
105214
(
2020
).
37.
W. J.
Kim
,
M.
Taya
, and
M. N.
Nguyen
, “
Electrical and thermal conductivities of a silver flake/thermosetting polymer matrix composite
,”
Mechanics of Materials The Special Issue in Honor of Leon M. Keer
41
,
1116
1124
(
2009
).
38.
R.
Franz
and
G.
Wiedemann
, “
Ueber die Warme-Leitungsfahlkigheit der Metalle
,”
Ann. Phys.
165
,
497
531
(
1853
).
39.
H.
Kristiansen
,
S.
Helland
,
E.
Kalland
,
M. A.
Ras
, and
C.
Grosse
, “Electrical and thermal conduction of isotropic conductive adhesive based on novel conductive particles,” in 2018 IMAPS Nordic Conference on Microelectronics Packaging (NordPac) (IEEE, 2018), pp. 40–44.
40.
S. R.
Pettersen
,
H.
Kristiansen
,
S.
Nagao
,
S.
Helland
,
J.
Njagi
,
K.
Suganuma
,
Z.
Zhang
, and
J.
He
, “
Contact resistance and metallurgical connections between silver coated polymer particles in isotropic conductive adhesives
,”
J. Electron. Mater.
45
,
3734
3743
(
2016
).
41.
H.-K.
Lyeo
and
D. G.
Cahill
, “
Thermal conductance of interfaces between highly dissimilar materials
,”
Phys. Rev. B
73
,
144301
(
2006
).
42.
S. I.
Anisimov
,
B. L.
Kapeliovich
, and
T. L.
Perel’man
, “
Electron emission from metal surfaces exposed to ultrashort laser pulses
,”
Sov. Phys. JETP
39
,
775
(
1974
).
43.
X.
Yang
,
C.
Liang
,
T.
Ma
,
Y.
Guo
,
J.
Kong
,
J.
Gu
,
M.
Chen
, and
J.
Zhu
, “
A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods
,”
Advanced Composites and Hybrid Materials
1
,
207
230
(
2018
).
44.
“Standard test method for thermal transmission properties of thermally conductive electrical insulation materials,” Tech. Rep. (ASTM International, West Conshohocken, PA, 2017).
45.
ASTM E1461-13 “Standard test method for thermal diffusivity by the flash method,” Tech. Rep. (ASTM International, West Conshohocken, PA, 2013).
46.
D. G.
Cahill
and
R. O.
Pohl
, “
Thermal conductivity of amorphous solids above the plateau
,”
Phys. Rev. B
35
,
4067
4073
(
1987
).
47.
S.
Sandell
,
E.
Chávez-Ángel
,
A.
El Sachat
,
J.
He
,
C. M.
Sotomayor Torres
, and
J.
Maire
, “
Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures
,”
J. Appl. Phys.
128
,
131101
(
2020
).
You do not currently have access to this content.