We report on the pulsed-laser-deposition (PLD) based nanodecoration of LiCoO2 (LCO) with BaTiO3 (BTO) nanoparticles (NPs) aimed at increasing the density of dielectric-active material–electrolyte triple-phase interfaces (TPIs). The BTO-NPs were deposited onto LCO at different numbers of laser pulses (NLp) and two different schemes, namely, (i) BTO-NP deposition on the surface of the precast cathode (“2D-nanodecoration”) and (ii) BTO-NP decoration of LCO powder prior to its processing to form a working cathode (“3D-nanodecoration”). While the “2D-nanodecoration” mode was found to improve significantly the discharge capacity of the LCO cathodes (by ∼30 mAh/g for NLp ≥ 200), their capacity retention (CR) was modest. In contrast, the “3D-nanodecoration” scheme enabled not only the volumic nanodecoration of the LCO powder by BTO-NPs but also their subsequent annealing to improve their crystallinity. These 3D-nanodecorated LCO cathodes were found to exhibit significantly higher CR values. In particular, for NLp = 100 k, a CR (@10 °C) as high as 78% was achieved (∼47% higher than that of their sol–gel-processed cathode counterparts). Our results point out that three key ingredients (small BTO-NP size, high DTPI, and high dispersibility of NPs on LCO) should be combined to ensure a high CR of BTO-NP-decorated LCO cathodes.

1.
J.
Lu
,
Z.
Chen
,
Z.
Ma
,
F.
Pan
,
L. A.
Curtiss
, and
K.
Amine
, “
The role of nanotechnology in the development of battery materials for electric vehicles
,”
Nature Nanotechnol.
11
(
12
),
1031
1038
(
2016
).
2.
T.
Horiba
,
T.
Maeshima
,
T.
Matsumura
,
M.
Koseki
,
J.
Arai
, and
Y.
Muranaka
, “
Applications of high power density lithium ion batteries
,”
J. Power Sources
146
(
1–2
),
107
110
(
2005
) ;
A.
Burke
and
M.
Miller
, “
The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications
,”
J. Power Sources
196
(
1
),
514
522
(
2011
).
3.
M.
Nakayama
,
H.
Ikuta
,
Y.
Uchimoto
, and
M.
Wakihara
, “
Study on the AC impedance spectroscopy for the Li insertion reaction of LixLa1/3NbO3 at the electrode-electrolyte interface
,”
J. Phys. Chem. B
107
(
38
),
10603
10607
(
2003
).
4.
F.
Nobili
,
R.
Tossici
,
R.
Marassi
,
F.
Croce
, and
B.
Scrosati
, “
An AC impedance spectroscopic study of LixCoO2 at different temperatures
,”
J. Phys. Chem. B
106
(
15
),
3909
3915
(
2002
).
5.
C. H.
Chen
,
J.
Liu
, and
K.
Amine
, “
Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries
,”
J. Power Sources
96
(
2
),
321
328
(
2001
).
6.
L.
Liu
,
H.
Li
,
Z.
Wang
,
X.
Huang
, and
L.
Chen
, “
Origin of solid electrolyte interphase on nanosized LiCoO2
,”
Electrochem. Solid State Lett.
9
(
7
),
A328
A331
(
2006
).
7.
Y.
Takanashi
,
Y.
Orikasa
,
M.
Mogi
,
M.
Oishi
,
H.
Murayama
,
K.
Sato
,
H.
Yamashige
,
D.
Takamatsu
,
T.
Fujimoto
,
H.
Tanida
,
H.
Arai
,
T.
Ohta
,
E.
Matsubara
,
Y.
Uchimoto
, and
Z.
Ogumi
, “
Thickness estimation of interface films formed on Li1−xCoO2 electrodes by hard x-ray photoelectron spectroscopy
,”
J. Power Sources
196
(
24
),
10679
10685
(
2011
).
8.
T.
Teranishi
,
Y.
Yoshikawa
,
M.
Yoneda
,
A.
Kishimoto
,
J.
Halpin
,
S.
O'Brien
,
M.
Modreanu
, and
I. M.
Povey
, “
Aluminum interdiffusion into LiCoO2 using atomic layer deposition for high rate lithium ion batteries
,”
ACS Appl. Energy Mater.
1
(
7
),
3277
3282
(
2018
).
9.
I. D.
Scott
,
Y. S.
Jung
,
A. S.
Cavanagh
,
Y.
Yan
,
A. C.
Dillon
,
S. M.
George
, and
S. H.
Lee
, “
Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications
,”
Nano Lett.
11
(
2
),
414
418
(
2011
).
10.
J.
Cho
,
Y. J.
Kim
, and
B.
Park
, “
Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell
,”
Chem. Mater.
12
(
12
),
3788
3791
(
2000
).
11.
A.
Sakuda
,
H.
Kitaura
,
A.
Hayashi
,
K.
Tadanaga
, and
M.
Tatsumisago
, “
Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses
,”
Electrochem. Solid State Lett.
11
(
1
),
A1
A3
(
2008
).
12.
N.
Ohta
,
K.
Takada
,
L.
Zhang
,
R.
Ma
,
M.
Osada
, and
T.
Sasaki
, “
Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification
,”
Adv. Mater.
18
(
17
),
2226
2229
(
2006
).
13.
W.
Hong
and
C.
Ming-Cai
, “
Modification of LiCoO2 by surface coating with MgO/TiO2/SiO2 for high-performance lithium-ion battery
,”
Electrochem. Solid State Lett.
9
(
2
),
A82
A85
(
2006
).
14.
T.
Teranishi
,
Y.
Yoshikawa
,
R.
Sakuma
,
H.
Hashimoto
,
H.
Hayashi
,
A.
Kishimoto
, and
T.
Fujii
, “
High-rate performance of ferroeelctric BaTiO3-coated LiCoO2 for Li-ion batteries
,”
Appl. Phys. Lett.
105
(
14
),
143904
(
2014
).
15.
Y. J.
Kim
,
J.
Cho
,
T. J.
Kim
, and
B.
Park
, “
Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings
,”
J. Electrochem. Soc.
150
(
12
),
A1723
A1725
(
2003
).
16.
J.
Cho
,
Y. J.
Kim
,
T. J.
Kim
, and
B.
Park
, “
Zero-strain intercalation cathode for rechargeable Li-ion cell
,”
Angew. Chem. Int. Ed.
40
(
18
),
3367
3369
(
2001
).
17.
T.
Teranishi
,
N.
Katsuji
,
K.
Chajima
,
S.
Yasuhara
,
M.
Inohara
,
Y.
Yoshikawa
,
S.
Yasui
,
H.
Hayashi
,
A.
Kishimoto
, and
M.
Itoh
, “
Low-temperature high-rate capabilities of lithium batteries via polarization-assisted ion pathways
,”
Adv. Electron. Mater.
4
(
4
),
1700413
(
2018
).
18.
S.
Yasuhara
,
S.
Yasui
,
T.
Teranishi
,
K.
Chajima
,
Y.
Yoshikawa
,
Y.
Majima
,
T.
Taniyama
, and
M.
Itoh
, “
Enhancement of ultrahigh rate chargeability by interfacial nanodot BaTiO3 treatment on LiCoO2 cathode thin film batteries
,”
Nano Lett.
19
(
3
),
1688
1694
(
2019
).
19.
T.
Teranishi
,
Y.
Yoshikawa
,
R.
Miyahara
,
H.
Hayashi
,
A.
Kishimoto
,
M.
Katayama
, and
Y.
Inada
, “
In situ time-resolved dispersive x-ray absorption fine structure analysis of BaTiO3-LiCoO2 composites for lithium ion batteries
,”
J. Ceram. Soc. Jpn.
124
(
6
),
659
663
(
2016
).
20.
Y.
Yoshikawa
,
T.
Teranishi
,
H.
Hayashi
, and
A.
Kishimoto
, “
Loading effect of a barium titanate artificial interface on high voltage capabilities at high charge and discharge rates
,”
Jpn. J. Appl. Phys.
56
(
10S
),
10PC01
(
2017
).
21.
T.
Teranishi
,
M.
Inohara
,
J.
Kano
,
H.
Hayashi
,
A.
Kishimoto
,
K.
Yoda
,
H.
Motobayashi
, and
Y.
Tasaki
, “
Synthesis of nano-crystalline LiNbO3-decorated LiCoO2 and resulting high rate capabilities
,”
Solid State Ionics
314
,
57
60
(
2018
).
22.
S.
Yasuhara
,
S.
Yasui
,
T.
Teranishi
,
Y.
Yoshikawa
,
T.
Taniyama
, and
M.
Itoh
, “
The effect of relative permittivity of surface supporting materials for high-speed rechargeable LiCoO2 cathode film
,”
J. Power Sources
441
(
30
),
227194
(
2019
).
23.
T.
Teranishi
,
K.
Kozai
,
S.
Yasuhara
,
S.
Yasui
,
N.
Ishida
,
K.
Ishida
,
M.
Nakayama
, and
A.
Kishimoto
, “
Ultrafast charge transfer at the electrode-electrolyte interface via an artificial dielectric layer
,”
J. Power Sources
494
,
229710
(
2021
).
24.
I.
Ka
,
B.
Gonfa
,
V.
Le Borgne
,
D.
Ma
, and
M. A.
El Khakani
, “
Pulsed laser ablation based synthesis of PbS-quantum dots-decorated 1D-nanostructures and their direct integration into highly efficient nanohybrid heterojunction-based solar cells
,”
Adv. Funct. Mater.
24
(
26
),
4042
4050
(
2014
).
25.
K.
Trabelsi
,
A.
Hajjaji
,
M.
Gaidi
,
B.
Bessais
, and
M. A.
El Khakani
, “
Enhancing the photo-electrochemical response of TiO2 nanotubes through their nanodecoration by pulsed-laser-deposited Ag nanoparticles
,”
J. Appl. Phys.
122
(
6
),
064503
(
2017
).
26.
T.
Favet
,
T.
Cottineau
,
V.
Keller
, and
M. A.
El Khakani
, “
Enhanced visible-light photoconversion efficiency of TiO2 nanotubes following their decoration by pulsed laser deposited CoNi nanoparticles
,”
Int. J. Hydrogen Energy
44
(
54
),
28656
28667
(
2018
).
27.
A.
Ojeda-G-P
,
C. W.
Schneider
,
M.
Döbeli
,
T.
Lippert
, and
A.
Wokaun
, “
The importance of pressure and mass ratios when depositing multi-element oxide thin films by pulsed laser deposition
,”
Appl. Surf. Sci.
389
,
126
134
(
2016
).
28.
B.
Dam
,
J. H.
Rector
,
J.
Johansson
,
J.
Huijbregtse
, and
D. G.
De Groot
, “
Mechanism of incongruent ablation of SrTiO3
,”
J. Appl. Phys.
83
(
6
),
3386
3389
(
1998
).
29.
T.
Ohnishi
,
M.
Lippmaa
,
T.
Yamamoto
,
S.
Meguro
, and
H.
Koinuma
, “
Improved stoichiometry and misfit control in perovskite thin film formation
,”
Appl. Phys. Lett.
87
,
241919
(
2005
).
30.
D.
Kan
and
Y.
Shimakawa
, “
Controlled cation stoichiometry in pulsed laser deposition-grown BaTiO3 epitaxial thin films with laser fluence
,”
Appl. Phys. Lett.
99
,
081907
(
2011
).
31.
T.
Teranishi
,
Y.
Yoshikawa
,
R.
Sakuma
,
H.
Okamura
,
H.
Hashimoto
,
H.
Hayashi
,
T.
Fujii
,
A.
Kishimoto
, and
Y.
Takeda
, “
High-rate capabilities of ferroelectric BaTiO3-LiCoO2 composites with optimized BaTiO3 loading for Li-ion batteries
,”
ECS Electrochem. Lett.
4
(
12
),
A137
A140
(
2015
).
32.
T.
Teranishi
,
N.
Katsuji
,
Y.
Yoshikawa
,
M.
Yoneda
,
H.
Hayashi
,
A.
Kishimoto
,
K.
Yoda
,
H.
Motobayashi
, and
Y.
Tasaki
, “
High rate capability of a BaTiO3-decorated LiCoO2 cathode prepared via metal organic decomposition
,”
Jpn. J. Appl. Phys.
55
(
10S
),
10TB01
(
2016
).
33.
L.
Liu
,
L.
Chen
,
X.
Huang
,
X.-Q.
Yang
,
W.-S.
Yoon
,
H. S.
Lee
, and
J.
McBreen
, “
Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material
,”
J. Electrochem. Soc.
151
(
9
),
A1344
A1354
(
2004
).
34.
M.
Anouar
,
R.
Jbilat
,
V.
Le Borgne
,
D.
Ma
, and
M. A.
El Khakani
, “
Ag nanoparticle-decorated single wall carbon nanotube films for photovoltaic applications
,”
Mater. Renew. Sustain. Energy
5
(
1
),
1
9
(
2016
).
35.
I.
Ka
,
D.
Ma
, and
M. A.
El Khakani
, “
Tailoring the photoluminescence of PbS-nanoparticles layers deposited by means of the pulsed laser ablation technique
,”
J. Nanopart. Res.
13
(
6
),
2269
2274
(
2011
).
36.
P.
Li
,
J. F.
McDonald
, and
T.-M.
Lu
, “
Densification induced dielectric properties change in amorphous BaTiO3 thin films
,”
J. Appl. Phys.
71
(
11
),
5596
5600
(
1992
).
37.
M.
Zhang
and
C.
Deng
, “
Orientation and electrode configuration dependence on ferroelectric, dielectric properties of BaTiO3 thin films
,”
Ceram. Int.
45
(
17
),
22716
22722
(
2019
).
38.
A.
Aidoud
,
T.
Maroutian
,
S.
Matzen
,
G.
Agnus
,
B.
Amrani
,
K.
Driss-Khodja
,
P.
Aubert
, and
P.
Lecoeur
, “
Tuning the growth and strain relaxation of ferroelectric BaTiO3 thin films on SrRuO3 electrode: Influence on electrical properties
,”
Eur. Phys. J. Appl. Phys.
80
(
3
),
30303
(
2017
).
You do not currently have access to this content.