We devise a simple heuristic method for obtaining the relaxation time and electrical conductivity dependence on the temperature of carriers in 2D semiconductors. The approach is computationally straightforward. It relies on the BoltzTraP algorithm (from the Boltzmann transport equation), on a direct fitting procedure, and on a proper scaling at a reference temperature. The approach provides a good estimate for the figure of merit ZT, an important characterization of thermoelectricity in materials. We employ our approach to analyze promising 2D systems for thermoelectric applications, namely, nitrogenated holey graphene (NHG), boron-doped NHG, and tungsten disulfide 2D-WS2. In all these cases, our results agree with computationally expensive calculations available in the literature at a fraction of the computing time.

1.
T. M.
Tritt
and
M. A.
Subramanian
, “
Thermoelectric materials, phenomena, and applications: A bird’s eye view
,”
MRS Bull.
31
,
188
198
(
2006
).
2.
E. M.
Barber
,
Thermoelectric Materials: Advances and Applications
(
Jenny Stanford Publishing
,
Singapore
,
2015
).
3.
D.
Beretta
,
N.
Neophytou
,
J. M.
Hodges
,
M. G.
Kanatzidis
,
D.
Narducci
,
M. M.
Gonzalez
,
M.
Beekman
,
B.
Balke
,
G.
Cerretti
,
W.
Tremel
,
A.
Zevalkink
,
A. I.
Hofmann
,
C.
Müller
,
B.
Dörling
,
M. C.
Quiles
, and
M.
Caironi
, “
Thermoelectrics: From history, a window to the future
,”
Mater. Sci. Eng., R
138
,
210
255
(
2019
).
4.
D.
Enescu
, “Thermoelectric energy harvesting: Basic principles and applications,” in Green Energy Advances (IntechOpen, London, 2019).
5.
W.
Chen
,
J.-H.
Pöhls
,
G.
Hautier
,
D.
Broberg
,
S.
Bajaj
,
U.
Aydemir
,
Z. M.
Gibbs
,
H.
Zhu
,
M.
Asta
,
G. J.
Snyder
,
B.
Meredig
,
M. A.
White
,
K.
Persson
, and
A.
Jain
, “
Understanding thermoelectric properties from high-throughput calculations: Trends, insights, and comparisons with experiment
,”
J. Mater. Chem. C
4
,
4414
4426
(
2016
).
6.
X.
Dong
,
H.
Yu
,
W.
Li
,
Y.
Pei
, and
Y.
Chen
, “
First-principles study on band structures and electrical transports of doped-SnTe
,”
J. Materiomics
2
,
158
164
(
2016
).
7.
A. N.
Gandi
and
U.
Schwingenschlögl
, “
WS2 as an excellent high-temperature thermoelectric material
,”
Chem. Mater.
26
,
6628
6637
(
2014
).
8.
W.-X.
Zhou
and
K.-Q.
Chen
, “
Enhancement of thermoelectric performance by reducing phonon thermal conductance in multiple core-shell nanowires
,”
Sci. Rep.
4
,
7150
(
2014
).
9.
L.
Ho Sung
,
Thermoelectrics: Design and Materials
(
Wiley
,
Chichester
,
2016
).
10.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
, “
ShengBTE: A solver of the Boltzmann transport equation for phonons
,”
Comp. Phys. Commun.
185
,
1747
1758
(
2014
).
11.
A.
Togo
,
L.
Chaput
, and
I.
Tanaka
, “
Distributions of phonon lifetimes in Brillouin zones
,”
Phys. Rev. B
91
,
094306
(
2015
).
12.
G. K. H.
Madsen
and
D. J.
Singh
, “
BoltzTraP. A code for calculating band-structure dependent quantities
,”
Comput. Phys. Commun.
175
,
67
71
(
2006
).
13.
C.
Sevik
and
T.
Çağın
, “
Assessment of thermoelectric performance of Cu2ZnSnX4, X=S, Se, and Te
,”
Appl. Phys. Lett.
95
,
112105
(
2009
).
14.
A. H.
Reshak
, “
Fe2MnSixGe1x: Influence thermoelectric properties of varying the germanium content
,”
RSC Adv.
4
,
39565
39571
(
2014
).
15.
P. H.
Jiang
,
H. J.
Liu
,
L.
Cheng
,
D. D.
Fan
,
J.
Zhang
,
J.
Wei
,
J. H.
Liang
, and
J.
Shi
, “
Thermoelectric properties of γ-graphyne from first-principles calculations
,”
Carbon
113
,
108
113
(
2017
).
16.
F. Q.
Wang
,
S.
Zhang
,
J.
Yu
, and
Q.
Wang
, “
Thermoelectric properties of single-layered SnSe sheet
,”
Nanoscale
7
,
15962
15970
(
2015
).
17.
A. J.
Hong
,
L.
Li
,
R.
He
,
J. J.
Gong
,
Z. B.
Yan
,
K. F.
Wang
,
J.-M.
Liu
, and
Z. F.
Ren
, “
Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds
,”
Sci. Rep.
6
,
22778
(
2016
).
18.
Y.
Zhao
,
Z.
Dai
,
C.
Lian
, and
S.
Meng
, “
Exotic thermoelectric behavior in nitrogenated holey graphene
,”
RSC Adv.
7
,
25803
25810
(
2017
).
19.
A.
Gusso
,
M. G. E.
da Luz
, and
L. G. C.
Rego
, “
Quantum chaos in nanoelectromechanical systems
,”
Phys. Rev. B
73
,
035436
(
2006
).
20.
J.
Mahmood
,
E. K.
Lee
,
M.
Jung
,
D.
Shin
,
I.-Y.
Jeon
,
S.-M.
Jung
,
H.-J.
Choi
,
J.-M.
Seo
,
S.-Y.
Bae
,
S.-D.
Sohn
,
N.
Park
,
J. H.
Oh
,
H.-J.
Shin
, and
J.-B.
Baek
, “
Nitrogenated holey two-dimensional structures
,”
Nat. Commun.
6
,
666
(
2015
).
21.
H.
Sahin
, “
Structural and phononic characteristics of nitrogenated holey graphene
,”
Phys. Rev. B
92
,
085421
(
2015
).
22.
B.
Mortazavi
,
O.
Rahaman
,
T.
Rabczuk
, and
L. F. C.
Pereira
, “
Thermal conductivity and mechanical properties of nitrogenated holey graphene
,”
Carbon
106
,
1
8
(
2016
).
23.
R. M.
Tromer
,
M. G. E.
da Luz
,
M. S.
Ferreira
, and
L. F. C.
Pereira
, “
Atomic adsorption on nitrogenated holey graphene
,”
J. Phys. Chem. C
121
,
3055
3061
(
2017
).
24.
R. M.
Tromer
,
A.
Freitas
,
I. M.
Felix
,
B.
Mortazavi
,
L. D.
Machado
,
S.
Azevedo
, and
L. F. C.
Pereira
, “
Electronic, optical and thermoelectric properties of boron-doped nitrogenated holey graphene
,”
Phys. Chem. Chem. Phys.
22
,
21147
21157
(
2020
).
25.
L.
Ci
,
L.
Song
,
C.
Jin
,
D.
Jariwala
,
D.
Wu
,
Y.
Li
,
A.
Srivastava
,
Z. F.
Wang
,
K.
Storr
,
L.
Balicas
,
F.
Liu
, and
P. M.
Ajayan
, “
Atomic layers of hybridized boron nitride and graphene domains
,”
Nat. Mater.
9
,
430
435
(
2010
).
26.
C.
Huang
,
C.
Chen
,
M.
Zhang
,
L.
Lin
,
X.
Ye
,
S.
Lin
,
M.
Antonietti
, and
X.
Wang
, “
Carbon-doped Bn nanosheets for metal-free photoredox catalysis
,”
Nat. Commun.
6
,
7698
(
2015
).
27.
A.
Freitas
,
L. D.
Machado
,
C. G.
Bezerra
,
R. M.
Tromer
,
L. F. C.
Pereira
, and
S.
Azevedo
, “
BxCyNz hybrid graphenylene: Stability and electronic properties
,”
RSC Adv.
8
,
24847
24856
(
2018
).
28.
S.
Azevedo
and
R.
de Paiva
, “
Structural stability and electronic properties of carbon-boron nitride compounds
,”
Europhys. Lett.
75
,
126
132
(
2006
).
29.
J.
Bera
and
S.
Sahu
, “
Strain induced valley degeneracy: A route to the enhancement of thermoelectric properties of monolayer WS2
,”
RSC Adv.
9
,
25216
25224
(
2019
).
30.
R.
Farris
,
M. B.
Maccioni
,
A.
Filippetti
, and
V.
Fiorentini
, “
Influence of thermal conductivity and of non-constant relaxation time on thermoelectricity in Mg3Sb2
,”
J. Phys.: Conf. Ser.
1226
,
012010
(
2019
).
31.
W.
Jones
and
N. H.
March
, Theoretical Solid State Physics (
Dover, Mineola
,
1985
).
32.
G.
Ding
,
Y.
Hu
,
D.
Li
, and
X.
Wang
, “
A comparative study of thermoelectric properties between bulk and monolayer SnSe
,”
Results Phys.
15
,
102631
(
2019
).
33.
Electronic and Photonic Materials, 2nd ed., edited by S. Kasap and P. Capper (Springer, Berlin, 2017).
34.
G. T.
Niitsu
,
H.
Nagata
, and
A.
Rodrigues
, “
Electrical properties along the X and Y properties
,”
J. Appl. Phys.
95
,
3116
(
2004
).
35.
L.
Dhivya
,
N.
Janani
,
B.
Palanivel
, and
R.
Murugan
, “
Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets
,”
AIP Adv.
3
,
082115
(
2013
).
36.
R. L.
González-Romero
,
A.
Antonelli
, and
J. J.
Meléndez
, “
Insights into the thermoelectric properties of SnSe from ab initio calculations
,”
Phys. Chem. Chem. Phys.
19
,
12804
(
2017
).
37.
X.
Zhang
,
H.
Xie
,
M.
Hu
,
H.
Bao
,
S.
Yue
,
G.
Qin
, and
G.
Su
, “
Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential
,”
Phys. Rev. B
89
,
054310
(
2014
).
38.
Q.
Li
,
E. H.
Hwang
, and
S. D.
Sarma
, “
Disorder-induced temperature-dependent transport in graphene: Puddles, impurities, activation, and diffusion
,”
Phys. Rev. B
84
,
115442
(
2011
).
39.
N.
Ma
and
D.
Jena
, “
Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors
,”
2D Mater.
2
,
015003
(
2015
).
40.
G.
Wachutka
and
G.
Schrag
,
Simulation of Semiconductor Processes and Devices
, 1st ed. (
Springer-Verlag Wien GmbH
,
Munich
,
2004
), Vol.
1
.
41.
E.
Bringuier
, “
The Boltzmann equation and relaxation-time approximation for electron transport in solids
,”
Eur. J. Phys.
40
,
025103
(
2019
).
42.
J.
Zhang
,
H. J.
Liu
,
L.
Cheng
,
J.
Wei
,
J.
Shi
,
X. F.
Tang
, and
C.
Uher
, “
Enhanced thermoelectric performance of a quintuple layer of Bi2Te3
,”
J. Appl. Phys.
116
,
023706
(
2014
).
43.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
44.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
46.
J.
Wei
,
H. J.
Liu
,
X. J.
Tan
,
L.
Cheng
,
J.
Zhang
,
D. D.
Fan
,
J.
Shi
, and
X. F.
Tang
, “
Theoretical study of the thermoelectric properties of SiGe nanotubes
,”
RSC Adv.
4
,
53037
53043
(
2014
).
47.
J.-B.
van Den Eynde
, “Influence of the relaxation time approximation on first principle study of transport coefficients in thermoelectric material PbTe,” master’s degree (Ècole Polytechnique de Louvain, 2016).
48.
S.
Kumar
and
U.
Schwingenschlögl
, “
Thermoelectric response of bulk and monolayer MoSe2 and WSe2
,”
Chem. Mater.
27
,
1278
1284
(
2015
).
49.
T.
Ouyang
,
H.
Xiao
,
C.
Tang
,
X.
Zhang
,
M.
Hu
, and
J.
Zhong
, “
First-principles study of thermal transport in nitrogenated holey graphene
,”
Nanotechnology
28
,
045709
(
2017
).
50.
P.
Sheng
,
Introduction to Wave Scattering, Localization and Mesoscopic Phenomena
, 2nd ed. (
Springer
,
Berlin
,
2006
).
51.
G.
Ding
,
G.
Gao
, and
K.
Yao
, “
High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds
,”
Sci. Rep.
5
,
9567
(
2015
).
52.
Y.
Ding
,
B.
Xiao
,
G.
Tang
, and
J.
Hong
, “
Transport properties and high thermopower of SnSe2: A full ab-initio investigation
,”
J. Phys. Chem. C
121
,
225
236
(
2017
).
53.
C.
Sevik
and
T.
Çağın
, “
Ab initio study of thermoelectric transport properties of pure and doped quaternary compounds
,”
Phys. Rev. B
82
,
045202
(
2010
).
54.
Physics of Semiconductor Devices, 4th ed., edited by S. M. Sze, Y. Li, and K. K. Ng (Wiley, Chichester, 2021).
You do not currently have access to this content.