In this paper, a fully numerical homogenization technique is presented for the retrieval of the effective constitutive parameters of a periodic composite medium. Based on the eigensolution returned by the utilized field-flux FEM formulation, a proper field averaging process of the field components is proposed over specific paths of the periodic unit cell of an arbitrary structure. Subsequently, the constitutive relations for every eigenmode supported by the medium are derived, forming a linear system of equations. The solution of this system returns a set of fifteen effective constitutive parameters, including the magnetoelectric coefficients, which account for possible cross-polarization effects, causing bianisotropy.
REFERENCES
1.
J. B.
Pendry
, A. J.
Holden
, D. J.
Robbins
, and W.
Stewart
, “Magnetism from conductors and enhanced nonlinear phenomena
,” IEEE Trans. Microwave Theory Tech.
47
, 2075
–2084
(1999
). 2.
J. B.
Pendry
, A.
Holden
, W.
Stewart
, and I.
Youngs
, “Extremely low frequency plasmons in metallic mesostructures
,” Phys. Rev. Lett.
76
, 4773
(1996
). 3.
V.
Veselago
, L.
Braginsky
, V.
Shklover
, and C.
Hafner
, “Negative refractive index materials
,” J. Comput. Theor. Nanosci.
3
, 189
–218
(2006
). 4.
R.
Marqués
, F.
Medina
, and R.
Rafii-El-Idrissi
, “Role of bianisotropy in negative permeability and left-handed metamaterials
,” Phys. Rev. B
65
, 144440
(2002
). 5.
R.
Marqués
, F.
Mesa
, J.
Martel
, and F.
Medina
, “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments
,” IEEE Trans. Antennas Propag.
51
, 2572
–2581
(2003
). 6.
J. D.
Baena
, J.
Bonache
, F.
Martín
, R. M.
Sillero
, F.
Falcone
, T.
Lopetegi
, M. A.
Laso
, J.
Garcia-Garcia
, I.
Gil
, M. F.
Portillo
, and M.
Sorolla
, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines
,” IEEE Trans. Microwave Theory Tech.
53
, 1451
–1461
(2005
). 7.
M.
Nitas
, M.-T.
Passia
, and T. V.
Yioultsis
, “Fully planar slow-wave substrate integrated waveguide based on broadside-coupled complementary split ring resonators for mmWave and 5G components
,” IET Microwave Antennas Propag.
14
, 1096
–1107
(2020
). 8.
D.
Smith
, S.
Schultz
, P.
Markoš
, and C.
Soukoulis
, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients
,” Phys. Rev. B
65
, 195104
(2002
). 9.
D.
Smith
, D.
Vier
, T.
Koschny
, and C.
Soukoulis
, “Electromagnetic parameter retrieval from inhomogeneous metamaterials
,” Phys. Rev. E
71
, 036617
(2005
). 10.
X.
Chen
, B.-I.
Wu
, J. A.
Kong
, and T. M.
Grzegorczyk
, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials
,” Phys. Rev. E
71
, 046610
(2005
). 11.
D.-H.
Kwon
, D. H.
Werner
, A. V.
Kildishev
, and V. M.
Shalaev
, “Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design
,” Opt. Express
16
, 11822
–11829
(2008
). 12.
R.
Zhao
, T.
Koschny
, and C. M.
Soukoulis
, “Chiral metamaterials: Retrieval of the effective parameters with and without substrate
,” Opt. Express
18
, 14553
–14567
(2010
). 13.
U. C.
Hasar
, J. J.
Barroso
, C.
Sabah
, Y.
Kaya
, and M.
Ertugrul
, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials
,” J. Opt. Soc. Am. B
30
, 1058
–1068
(2013
). 14.
U. C.
Hasar
, G.
Buldu
, Y.
Kaya
, and G.
Ozturk
, “Determination of effective constitutive parameters of inhomogeneous metamaterials with bianisotropy
,” IEEE Trans. Microwave Theory Tech.
66
, 3734
–3744
(2018
). 15.
U. C.
Hasar
and M.
Bute
, “Method for retrieval of electromagnetic properties of inhomogeneous reciprocal chiral metamaterials
,” IEEE Trans. Antennas Propag.
68
, 5714
–5717
(2020
). 16.
U. C.
Hasar
and M.
Bute
, “Parameter retrieval of bianisotropic metamaterials without application of the passivity principle
,” IEEE Trans. Electromagn. Compat.
63
, 951
–955
(2021
). 17.
Y.
Shi
, Z.-Y.
Li
, K.
Li
, L.
Li
, and C.-H.
Liang
, “A retrieval method of effective electromagnetic parameters for inhomogeneous metamaterials
,” IEEE Trans. Microwave Theory Tech.
65
, 1160
–1178
(2017
). 18.
A. D.
Scher
and E. F.
Kuester
, “Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles
,” Metamaterials
3
, 44
–55
(2009
). 19.
A.
Alù
, “First-principles homogenization theory for periodic metamaterials
,” Phys. Rev. B
84
, 075153
(2011
). 20.
X.-X.
Liu
and A.
Alù
, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach
,” Phys. Rev. B
87
, 235136
(2013
). 21.
T. D.
Karamanos
, A. I.
Dimitriadis
, and K.
Nikolaos V.
, “Polarizability matrix extraction of a bianisotropic metamaterial from the scattering parameters of normally incident plane waves
,” Adv. Electromagn.
1
, 64
–70
(2012
). 22.
T. D.
Karamanos
, S. D.
Assimonis
, A. I.
Dimitriadis
, and N. V.
Kantartzis
, “Effective parameter extraction of 3D metamaterial arrays via first-principles homogenization theory
,” Photonics Nanostruct. Fundam. Appl.
12
, 291
–297
(2014
). 23.
T. D.
Karamanos
, A. I.
Dimitriadis
, and N. V.
Kantartzis
, “Robust technique for the polarisability matrix retrieval of bianisotropic scatterers via their reflection and transmission coefficients
,” IET Microwave Antennas Propag.
8
, 1398
–1407
(2014
). 24.
D. R.
Smith
and J. B.
Pendry
, “Homogenization of metamaterials by field averaging
,” J. Opt. Soc. Am. B
23
, 391
–403
(2006
). 25.
J.-M.
Lerat
, N.
Malléjac
, and O.
Acher
, “Determination of the effective parameters of a metamaterial by field summation method
,” J. Appl. Phys.
100
, 084908
(2006
). 26.
A.
Pors
, I.
Tsukerman
, and S. I.
Bozhevolnyi
, “Effective constitutive parameters of plasmonic metamaterials: Homogenization by dual field interpolation
,” Phys. Rev. E
84
, 016609
(2011
). 27.
M.
Nitas
, C.
Antonopoulos
, and T.
Yioultsis
, “E-B eigenmode formulation for the analysis of lossy and evanescent modes in periodic structures and metamaterials
,” IEEE Trans. Magn.
53
, 1
–4
(2017
). 28.
M.
Nitas
and T. V.
Yioultsis
, “Characterization of edge-coupled broadside-coupled and complementary split-ring resonator periodic media based on numerical solutions of eigenvalue problems
,” IEEE Trans. Microwave Theory Tech.
69
, 5259
–5269
(2021
). 29.
M.
Nitas
, V.
Salonikios
, C.
Antonopoulos
, and T.
Yioultsis
, “Numerical calculation of dispersion diagrams and field distributions of waves in 3D periodic split-ring resonator media
,” IEEE Trans. Magn.
55
, 1
–4
(2019
). 30.
V.
Salonikios
, M.
Nitas
, S.
Raptis
, and T. V.
Yioultsis
, “Computational analysis of graphene-based periodic structures via a three-dimensional field-flux eigenmode finite element formulation
,” Prog. Electromagn. Res. M
92
, 157
–167
(2020
). 31.
C.
Fietz
, Y.
Urzhumov
, and G.
Shvets
, “Complex k band diagrams of 3D metamaterial/photonic crystals
,” Opt. Express
19
, 19027
–19041
(2011
). 32.
E.
Shamonina
, “Slow waves in magnetic metamaterials: History, fundamentals and applications
,” Phys. Status Solidi B
245
, 1471
–1482
(2008
). 33.
C. L.
Holloway
, E. F.
Kuester
, J. A.
Gordon
, J.
O’Hara
, J.
Booth
, and D. R.
Smith
, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials
,” IEEE Antennas Propag Mag.
54
, 10
–35
(2012
). 34.
N.
Katsarakis
, T.
Koschny
, M.
Kafesaki
, E.
Economou
, and C.
Soukoulis
, “Electric coupling to the magnetic resonance of split ring resonators
,” Appl. Phys. Lett.
84
, 2943
–2945
(2004
). 35.
T. G.
Mackay
and A.
Lakhtakia
, Electromagnetic Anisotropy and Bianisotropy: A Field Guide
(World Scientific
, 2010
).36.
A.
Serdyukov
, I.
Semchenko
, S.
Tretyakov
, and A.
Sihvola
, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications
(Gordon and Breach Science Publishers
, 2001
).37.
M.
Nitas
, V.
Salonikios
, and T. V.
Yioultsis
, “Alternative finite element formulations for the simulation of lossy bianisotropic media” (2021).38.
R. D.
Graglia
, P. L.
Uslenghi
, and R. E.
Zich
, “Dispersion relation for bianisotropic materials and its symmetry properties
,” IEEE Trans. Antennas Propag.
39
, 83
–90
(1991
). 39.
I. V.
Lindell
and F.
Dahl
, “Conditions for the parameter dyadics of lossy bianisotropic media
,” Microwave Opt. Technol. Lett.
29
, 175
–178
(2001
). 40.
E. L.
Tan
, “Reduced conditions for the constitutive parameters of lossy bi-anisotropic media
,” Microwave Opt. Technol. Lett.
41
, 133
–135
(2004
). 41.
The option of averaging the normally continuous field components by integrating on the volume of a unit cell may appear to be in contrast with the other proposed options, where the integrating paths lay on the boundaries of the unit cell. Comparing this situation to consideration of atomic scales, under the assumption that the wavelength is much larger than the unit cell’s dimensions, there is practically no information relative to the field variation very close to the atoms or molecules. However, in the case of a computational solution of a metamaterial composite medium, provided that the information of the field distributions is available in detail (the field distribution is known inside the unit cell, and, especially, on and around the scatterers), we make use of this intrinsic detail by integrating the field component of interest on the whole volume of the meta-atom (unit cell). The results presented in this section exhibit values very close relative to the integration on the alternative paths, indicating that there is no violation of any physical law.
© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.