Aluminum (Al) and titanium (Ti) are superconducting materials but their superconducting transition temperatures (Tc) are quite low as 1.20 and 0.39 K, respectively, while magnesium (Mg) never exhibits superconductivity. In this study, we explored new superconductors with higher Tc in the Al–Mg–Ti ternary system, along with the prediction using machine learning. High-pressure torsion (HPT) is utilized to produce the superconducting states. While performing AC magnetization measurements, we found, for the first time, superconducting states with Tc=4.0 and 7.3 K for a composition of Al:Ti = 1:2. The magnetic anomalies appeared more sharply when the sample was processed by HPT at 573 K than at room temperature, and the anomalies exhibited DC magnetic field dependence characteristic of superconductivity. Magnetic anomalies also appeared at 55 and 93 K, being supported by the prediction using the machine learning for the Al–Ti–O system, and this suggests that Al–Ti oxides play an important role in the advent of such anomalies but that the addition of Mg could be less effective.

2.
M.
Mito
,
H.
Kondo
,
T.
Arase
,
K.
Irie
,
S.
Takagi
,
H.
Deguchi
,
T.
Tajiri
, and
M.
Ishizuka
,
Phys. Rev. B
104
,
054431
(
2021
).
3.
B. T.
Matthias
,
T. H.
Geballe
, and
V. B.
Compton
,
Rev. Mod. Phys.
35
,
1
(
1963
).
4.
L.
Shumei
,
Z.
Dianlin
,
J.
Xiunian
,
L.
Li
,
L.
Shanlin
,
K.
Ning
,
W.
Xiaosong
, and
J. J.
Lin
,
Phys. Rev. B
62
,
8695
(
2000
).
5.
E. M.
Savitskii
,
V. V.
Baron
,
Y. V.
Efimov
,
M. I.
Bychkova
, and
L. F.
Myzenkova
,
Superconducting Materials
(
Springer
,
Boston
,
1973
).
7.
E.
Bauer
,
H.
Kaldarar
,
R.
Lackner
,
H.
Michor
,
W.
Steiner
,
E. W.
Scheidt
,
A.
Galatanu
,
F.
Marabelli
,
T.
Wazumi
,
K.
Kumagai
et al.,
Phys. Rev. B
76
,
014528
(
2007
).
8.
C. G.
Granqvist
,
J.
Ivarsson
, and
T.
Claeson
,
Phys. Status Solidi B
60
,
157
(
1973
).
9.
N. J.
Doyle
,
J. K.
Hulm
,
C. K.
Jones
,
R. C.
Miller
, and
A.
Taylor
,
Phys. Lett. A
26
,
604
(
1968
).
10.
J. K.
Hulm
,
C. K.
Jones
,
R. A.
Hein
, and
J. W.
Gibson
,
J. Low Temp. Phys.
7
,
291
(
1972
).
11.
T. B.
Reed
,
M. D.
Banus
,
M.
Sjöstrand
, and
P. H.
Keesom
,
J. Appl. Phys.
43
,
2478
(
1972
).
12.
C.
Zhang
,
F.
Hao
,
G.
Gao
,
X.
Liu
,
C.
Ma
,
Y.
Lin
,
Y.
Yin
, and
X.
Li
,
npj Quantum Mater.
2
,
2
(
2017
).
13.
K.
Yoshimatsu
,
O.
Sakata
, and
A.
Ohtomo
,
Sci. Rep.
7
,
12544
(
2017
).
14.
S.
Sekiguchi
,
T.
Shiraishi
,
K.
Miura
,
C.
Kawashima
,
K.
Yoshimatsu
,
A.
Ohtomo
,
H.
Kamioka
, and
H.
Takahashi
,
J. Phys. Soc. Jpn.
88
,
035001
(
2019
).
15.
W.
Hu
,
Z.
Feng
,
B.-C.
Gong
,
G.
He
,
D.
Li
,
M.
Qin
,
Y.
Shi
,
Q.
Li
,
Q.
Zhang
,
J.
Yuan
et al.,
Phys. Rev. B
101
,
220510(R)
(
2020
).
16.
K.
Matsumoto
and
T.
Horide
,
Appl. Phys. Express
12
,
073003
(
2019
).
17.
R.
Matsumoto
,
Z.
Hou
,
M.
Nagao
,
S.
Adachi
,
H.
Hara
,
H.
Tanaka
,
K.
Nakamura
,
R.
Murakami
,
S.
Yamamoto
,
H.
Takeya
et al.,
Sci. Technol. Adv. Mater.
19
,
909
(
2018
).
18.
R.
Matsumoto
,
Z.
Hou
,
S.
Adachi
,
M.
Nagao
,
S.
Yamamoto
,
P.
Song
,
N.
Kataoka
,
P. B.
de Castro
,
K.
Terashima
,
H.
Takeya
et al.,
High Pressure Res.
40
,
22
(
2020
).
19.
P. W.
Bridgman
,
Phys. Rev.
48
,
825
(
1935
).
20.
R.
Valiev
,
Y.
Estrin
,
Z.
Horita
,
T.
Langdon
,
M.
Zehetbauer
, and
Y.
Zhu
,
JOM
58
,
33
(
2006
).
21.
M.
Mito
,
H.
Matsui
,
K.
Tsuruta
,
T.
Yamaguchi
,
K.
Nakamura
,
H.
Deguchi
,
N.
Shirakawa
,
H.
Adachi
,
T.
Yamasaki
,
H.
Iwaoka
et al.,
Sci. Rep.
6
,
59
(
2016
).
22.
H.
Razavi-Khosroshah
and
M.
Fuji
,
Mater. Trans.
60
,
1203
(
2019
).
24.
M.
Mito
,
S.
Shigeoka
,
H.
Kondo
,
N.
Noumi
,
Y.
Kitamura
,
K.
Irie
,
K.
Nakamura
,
S.
Takagi
,
H.
Deguchi
,
T.
Tajiri
et al.,
Mater. Trans.
60
,
1472
(
2019
).
25.
T.
Nishizaki
,
K.
Edalati
,
S.
Lee
,
Z.
Horita
,
T.
Akune
,
T.
Nojima
,
S.
Iguchi
, and
T.
Sasaki
,
Mater. Trans.
60
,
1367
(
2019
).
26.
A.
Bachmaier
and
R.
Pippan
,
Mater. Trans.
60
,
1256
(
2019
).
27.
Y.
Tang
,
M.
Murayama
,
K.
Edalati
,
Q.
Wang
,
S.
Iikubo
,
T.
Masuda
,
Y.
Higo
,
Y.
Tange
,
Y.
Ohishi
,
M.
Mito
et al.,
J. Alloys Compd.
889
,
161815
(
2021
).
28.
K.
Edalati
and
Z.
Horita
,
Rev. Adv. Mater. Sci.
31
,
5
(
2012
); available at https://ipme.ru/e-journals/RAMS/no_13112/02_13112_edalati.pdf.
29.
Z.
Horita
,
Y.
Tang
,
T.
Masuda
, and
Y.
Takizawa
,
Mater. Trans.
61
,
1177
(
2020
).
30.
“Database of superconductors,” http://supercon.nims.go.jp/.
31.
G.
Garbarino
and
M.
Núñez-Regueiro
,
Solid State Commun.
142
,
306
(
2007
).
32.
J.
Nagamatsu
,
N.
Nakagawa
,
T.
Muranaka
,
Y.
Zenitani
, and
J.
Akimitsu
,
Nature
410
,
63
(
2001
).
33.
H.
Hosono
,
K.
Tanabe
,
E.
Takayama-Muromachi
,
H.
Kageyama
,
S.
Yamanaka
,
H.
Kumakura
,
M.
Nohara
,
H.
Hiramatsu
, and
S.
Fujitsu
,
Sci. Technol. Adv. Mater.
16
,
033503
(
2016
).
34.
Z.
Horita
,
D.
Maruno
,
Y.
Ikeda
,
T.
Masuda
,
Y.
Tang
,
M.
Arita
,
Y.
Higo
,
Y.
Tange
, and
Y.
Ohishi
,
Mater. Trans.
62
,
167
(
2021
).
35.
36.
A.
Mazilkin
,
B.
Straumal
,
A.
Kilmametov
,
P.
Straumal
, and
B.
Baretzky
,
Mater. Trans.
60
,
1489
(
2019
).
37.
T.
Tohyama
,
R.
Ogura
,
K.
Yoshinaga
,
S.
Naito
,
N.
Miyakawa
, and
E.
Kaneshita
,
J. Phys. Chem. Solids
127
,
252
(
2019
).
38.
“The materials project,” https://materialsproject.org/.
39.
S.
Andersson
and
A.
Magnéli
,
Die Naturwiss.
43
,
495
496
(
1956
).
40.
R.
Akashi
,
W.
Sano
,
R.
Arita
, and
S.
Tsuneyuki
,
Phys. Rev. Lett.
117
,
075503
(
2016
).
41.
A. F.
Arif
,
R.
Balgis
,
T.
Ogi
,
F.
Iskandar
,
A.
Kinoshita
,
K.
Nakamura
, and
K.
Okuyama
,
Sci. Rep.
7
,
1641
(
2017
).
42.
N. J.
Bogdanova
,
G. P.
Pirogorskaya
, and
S. M.
Ariya
,
Zh. Neorg. Khim.
8
,
785
(
1963
).
43.
P. W.
Gilles
,
K. D.
Carlson
,
H. F.
Franzen
, and
P. G.
Wahlbeck
,
J. Chem. Phys.
46
,
2461
(
1967
).
44.
Y.-B.
Kang
and
H.-G.
Lee
,
ISIJ Int.
45
,
1543
(
2005
).
45.
Y.-B.
Kang
,
I.-H.
Jung
, and
H.-G.
Lee
,
Calphad
30
,
235
247
(
2006
).
46.
M.
Hase
,
I.
Terasaki
, and
K.
Uchinokura
,
Phys. Rev. Lett.
70
,
3651
(
1993
).
47.
M.
Hase
,
I.
Terasaki
, and
K.
Uchinokura
,
Phys. Rev. Lett.
70
,
3651
(
1993
).
48.
K.
Hirota
,
D. E.
Cox
,
I. E.
Lorenzo
,
G.
Shirane
,
I. M.
Tranquada
,
M.
Hase
,
K.
Uchinokura
,
H.
Kojima
, and
Y. S.
Tanaka
,
Phys. Rev. Lett.
73
,
736
(
1994
).
49.
M.
Isobe
and
Y.
Ueda
,
J. Phys. Soc. Jpn.
65
,
1178
(
1996
).
You do not currently have access to this content.