We investigated the synthesis of amorphous aluminum titanium oxide Al1−xTixOy thin films from a Al(acac)3 and Ti(acac)4 mixture using CH3OH/H2O as a solvent through mist chemical vapor deposition (mist-CVD) for application as a high dielectric material. The Ti composition ratio x in the Al1−xTixOy thin films depends on the Al(acac)3 and Ti(acac)4 mixing ratios and CH3OH/H2O volume ratio. A bandgap energy of Al1−xTixOy films was decreased from 6.38 to 4.25 eV and the surface roughness also decreased when the Ti composition ratio was increased from 0 to 0.54. The capacitance–voltage plot revealed that the dielectric constant of Al1−xTixOy thin films increased from 6.23 to 25.12. Consequently, Al1−xTixOy thin films with a bandgap energy of 5.12 eV and a dielectric constant of 13.8 were obtained by adjusting the ratio x of 0.26. This Al0.74Ti0.26Oy layer was applied as a gate dielectric layer for metal-oxide-semiconductor field-effect transistors (MOSFETs) using a mechanically exfoliated two-dimensional (2D) transition metal dichalcogenide (TMDC), MoSe2, and As-doped WSe2 flakes as a channel layer. The MoSe2-based MOSFETs with source/drain gold electrodes exhibit n-channel behavior with a field-effect mobility of 85 cm2/(V s), a threshold voltage of 0.92 V. On the other hand, an on/off ratio of ∼106. As-doped WSe2-based MOSFETs with source/drain platinum electrodes also showed an ambipolar behavior, which was applied for use in logic applications. These findings suggest that Al0.74Ti0.26Oy by mist-CVD is promising as a high-k material for TMDC-based MOSFETs.

1.
Y.
Aoki
,
T.
Kunitake
, and
A.
Nakao
,
Chem. Mater.
17
,
450
(
2005
).
2.
H. J.
Lee
,
T.
Moon
,
S.
Kang
,
W.
Kim
, and
C. S.
Hwang
,
ACS Appl. Electron. Mater.
3
,
3247
(
2021
).
3.
J. G.
Song
,
S. J.
Kim
,
W. J.
Woo
,
Y.
Kim
,
I. K.
Oh
,
G. H.
Ryu
,
Z.
Lee
,
J. H.
Lim
,
J.
Park
, and
H.
Kim
,
ACS Appl. Mater. Interfaces
8
,
28130
(
2016
).
4.
H.
Bergeron
,
V. K.
Sangwan
,
J. J.
McMorrow
,
G. P.
Campbell
,
I.
Balla
,
X.
Liu
,
M. J.
Bedzyk
,
T. J.
Marks
, and
M. C.
Hersam
,
Appl. Phys. Lett.
110
,
053101
(
2017
).
5.
Y.
Wang
,
H.
Wang
,
C.
Ye
,
J.
Zhang
,
H.
Wang
, and
Y.
Jiang
,
ACS Appl. Mater. Interfaces
3
,
3813
(
2011
).
6.
C. H.
Choi
,
T.
Kim
,
S.
Ueda
,
Y. S.
Shiah
,
H.
Hosono
,
J.
Kim
, and
J. K.
Jeong
,
ACS Appl. Mater. Interfaces
13
,
28451
(
2021
).
7.
G.
He
,
J.
Gao
,
H.
Chen
,
J.
Cui
,
Z.
Sun
, and
X.
Chen
,
ACS Appl. Mater. Interfaces
6
,
22013
(
2014
).
8.
T.
Hashizume
,
S.
Ootomo
,
T.
Inagaki
, and
H.
Hasegawa
,
J. Vac. Sci. Technol. B
21
,
1828
(
2003
).
9.
M. A.
Khan
,
X.
Hu
,
A.
Tarakji
,
G.
Simin
,
J.
Yang
,
R.
Gaska
, and
M. S.
Shur
,
Appl. Phys. Lett.
77
(
9
),
1339
(
2000
).
10.
J.
Robertson
,
Rep. Prog. Phys.
69
,
327
(
2006
).
11.
J.
Robertson
,
J. Vac. Sci. Technol. B
18
,
1785
(
2000
).
12.
C.
Mahata
,
S.
Mallik
,
T.
Das
,
C. K.
Maiti
,
G. K.
Dalapati
,
C. C.
Tan
,
C. K.
Chia
,
H.
Gao
,
M. K.
Kumar
,
S. Y.
Chiam
,
H. R.
Tan
,
H. L.
Seng
,
D. Z.
Chi
, and
E.
Miranda
,
Appl. Phys. Lett.
100
,
062905
(
2012
).
13.
S.
Mallik
,
C.
Mahata
,
M. K.
Hota
,
G. K.
Dalapati
,
D. Z.
Chi
,
C. K.
Sarkar
, and
C. K.
Maiti
,
Microelectron. Eng.
87
,
2234
(
2010
).
14.
A. F.
Lima
,
J. M.
Dantas
, and
M. V.
Lalic
,
J. Appl. Phys.
112
, 093709 (
2012
).
15.
J.
Acharya
,
J.
Wilt
,
B.
Liu
, and
J.
Wu
,
ACS Appl. Mater. Interfaces
10
,
3112
(
2018
).
16.
O.
Auciello
,
W.
Fan
,
B.
Kabius
,
S.
Saha
,
J. A.
Carlisle
,
R. P. H.
Chang
,
C.
Lopez
,
E. A.
Irene
, and
R. A.
Baragiola
,
Appl. Phys. Lett.
86
,
042904
(
2005
).
17.
A.
Rajib
,
M.
Tariqur Rahman
, and
A. B.
Md. Ismail
,
J. Phys. Conf. Ser.
1718
,
012015
(
2021
).
18.
S.
Dutta Gupta
,
A.
Soni
,
V.
Joshi
,
J.
Kumar
,
R.
Sengupta
,
H.
Khand
,
B.
Shankar
,
N.
Mohan
,
S.
Raghavan
,
N.
Bhat
, and
M.
Shrivastava
,
IEEE Trans. Electron Devices
66
,
2544
(
2019
).
19.
D. D.
Nguyen
and
T. K.
Suzuki
,
J. Appl. Phys.
127
,
094501
(
2020
).
20.
I.
Jõgi
,
K.
Kukli
,
M.
Kemell
,
M.
Ritala
, and
M.
Leskelä
,
J. Appl. Phys.
102
,
114114
(
2007
).
21.
L.
Shi
,
Y. D.
Xia
,
B.
Xu
,
J.
Yin
, and
Z. G.
Liu
,
J. Appl. Phys.
101
,
034102
(
2007
).
22.
Z.
Yatabe
,
K.
Nishiyama
,
T.
Tsuda
,
K.
Nishimura
, and
Y.
Nakamura
,
Jpn. J. Appl. Phys.
58
,
070905
(
2019
).
23.
R. S.
Low
,
J. T.
Asubar
,
A.
Baratov
,
S.
Kamiya
,
I.
Nagase
,
S.
Urano
,
S.
Kawabata
,
H.
Tokuda
,
M.
Kuzuhara
,
Y.
Nakamura
,
K.
Naito
,
T.
Motoyama
, and
Z.
Yatabe
,
Appl. Phys. Express
14
,
031004
(
2021
).
24.
Z. Y.
Wang
,
R. J.
Zhang
,
H. L.
Lu
,
X.
Chen
,
Y.
Sun
,
Y.
Zhang
,
Y. F.
Wei
,
J. P.
Xu
,
S. Y.
Wang
,
Y. X.
Zheng
, and
L. Y.
Chen
,
Nanoscale Res. Lett.
10
,
1
(
2015
).
25.
B. H.
Kim
,
J. Y.
Lee
,
Y. H.
Choa
,
M.
Higuchi
, and
N.
Mizutani
,
Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.
107
,
289
(
2004
).
26.
A.
Rajib
,
A.
Kuddus
,
T.
Shida
,
K.
Ueno
, and
H.
Shirai
,
ACS Appl. Electron. Mater.
3
,
658
(
2021
).
27.
A.
Rajib
,
K. M.
Enamul
,
S.
Kurosu
,
T.
Ukai
,
M.
Tokuda
,
Y.
Fujii
,
T.
Hanajiri
,
R.
Ishikawa
,
K.
Ueno
, and
H.
Shirai
,
J. Vac. Sci. Technol. A
38
,
033413
(
2020
).
28.
T.
Kawaharamura
,
T.
Uchida
,
M.
Sanada
, and
M.
Furuta
,
AIP Adv.
3
,
032135
(
2013
).
29.
A.
Lale
,
E.
Scheid
,
F.
Cristiano
,
L.
Datas
,
B.
Reig
,
J.
Launay
, and
P.
Temple-Boyer
,
Thin Solid Films
666
,
20
(
2018
).
30.
P.
Atkins
,
Atkins’ Physical Chemistry
(
Oxford University Press
,
2006
), ISBN:9780198700722,0198700725.
31.
D. S.
Shang
,
L. D.
Chen
,
Q.
Wang
,
W. D.
Yu
,
X. M.
Li
,
J. R.
Sun
, and
B. G.
Shen
,
J. Appl. Phys.
105
,
063511
(
2009
).
32.
W.
Yang
,
K.
Song
,
Y.
Jung
,
S.
Jeong
, and
J.
Moon
,
J. Mater. Chem. C
1
,
4275
(
2013
).
33.
H.
Wang
,
W.
Xu
,
S.
Zhou
,
F.
Xie
,
Y.
Xiao
,
L.
Ye
,
J.
Chen
, and
J.
Xu
,
J. Appl. Phys.
117
,
035703
(
2015
).
34.
N.
Koslowski
,
S.
Sanctis
,
R. C.
Hoffmann
,
M.
Bruns
, and
J. J.
Schneider
,
J. Mater. Chem. C
7
,
1048
(
2019
).
35.
H. W.
Zan
,
C. C.
Yeh
,
H. F.
Meng
,
C. C.
Tsai
, and
L. H.
Chen
,
Adv. Mater.
24
,
3509
(
2012
).
36.
Y.-R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
(
CRC Press
,
2002
), p.
1
.
37.
S.
Ganguly
,
J.
Verma
,
G.
Li
,
T.
Zimmermann
,
H.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
99
,
193504
(
2011
).
38.
W.
Boukhili
,
M.
Mahdouani
,
M.
Erouel
,
J.
Puigdollers
, and
R.
Bourguiga
,
Synth. Met.
199
,
303
(
2015
).
39.
T. J.
Seok
,
Y.
Liu
,
H. J.
Jung
,
S. B.
Kim
,
D. H.
Kim
,
S. M.
Kim
,
J. H.
Jang
,
D. Y.
Cho
,
S. W.
Lee
, and
T. J.
Park
,
ACS Nano
12
,
10403
(
2018
).
40.
D.
Afouxenidis
,
R.
Mazzocco
,
G.
Vourlias
,
P. J.
Livesley
,
A.
Krier
,
W. I.
Milne
,
O.
Kolosov
, and
G.
Adamopoulos
,
ACS Appl. Mater. Interfaces
7
,
7334
(
2015
).
41.
J. C.
Slater
,
J. Chem. Phys.
41
,
3199
(
1964
).
42.
Y. F.
Lin
,
Y.
Xu
,
S. T.
Wang
,
S. L.
Li
,
M.
Yamamoto
,
A.
Aparecido-Ferreira
,
W.
Li
,
H.
Sun
,
S.
Nakaharai
,
W.-B.
Jian
,
K.
Ueno
, and
K.
Tsukagoshi
,
Adv. Mater.
26
,
3263
(
2014
).
43.
F.
Schwierz
,
Nat. Nanotechnol.
5
,
487
(
2010
).
44.
R.
Mukherjee
,
H. J.
Chuang
,
M. R.
Koehler
,
N.
Combs
,
A.
Patchen
,
Z. X.
Zhou
, and
D.
Mandrus
,
Phys. Rev. Appl.
7
,
034011
(
2017
).

Supplementary Material

You do not currently have access to this content.