We aimed to identify metallic materials that could be used to construct metal-coated dielectric terahertz (THz) waveguides. We examined seven different metals: gold (Au), copper (Cu), silver (Ag), aluminum (Al), nickel (Ni), chromium (Cr), and titanium (Ti). The propagation losses of our in-house metal-coated dielectric parallel-plate waveguide (PPWG) were experimentally determined. We developed a physical model to estimate the two key parameters determining the performance of metal-coated waveguides: the critical film thickness required for bulk material-like behavior and the propagation loss in a film with a thickness greater than critical film thickness. Film quality, as revealed by the thickness-dependent electrical conductivity of the metal film, was measured prior to experiments and used for model calculations because propagation loss is influenced by film conductivity, which differs from bulk conductivity and depends on film thickness. After experimentally validating the applicability of the model to different metals, suitable metals were identified based on the two key parameters calculated by the model, assuming the same high film quality. Cu was identified as the optimal metal. The effect of film quality on the two key parameters is discussed in this paper. The impact of the surface oxide (CuOx) layer on THz wave propagation was experimentally evaluated using CuOx/Cu-coated PPWG; no detectable transmittance decrease was observed regardless of the CuOx thickness (1.5–176 nm), when the underlying Cu film was of sufficient thickness. Our model also indicated that a CuOx layer <1 μm-thick had a negligible impact on THz wave propagation. Thus, native oxidation is not an issue when using Cu.

1.
L.
Afsah-Hejri
,
E.
Akbari
,
A.
Toudeshki
,
T.
Homayouni
,
A.
Alizadeh
, and
R.
Ehsani
,
Comput. Electron. Agric.
177
,
105628
(
2020
).
2.
I. F.
Akyildiz
,
J. M.
Jornet
, and
C.
Han
,
Phys. Commun.
12
,
16
(
2014
).
3.
W. R.
Tribe
,
D. A.
Newnham
,
P. F.
Taday
, and
M. C.
Kemp
, “
Hidden object detection: Security applications of terahertz technology
,”
Proc. SPIE
5354
,
168
(
2004
).
4.
L.
Yu
,
L.
Hao
,
T.
Meiqiong
,
H.
Jiaoqi
,
L.
Wei
,
D.
Jinying
,
C.
Xueping
,
F.
Weiling
, and
Z.
Yang
,
RSC Adv.
9
,
9354
(
2019
).
5.
R.
Dickie
,
R.
Cahill
,
V.
Fusco
,
H. S.
Gamble
, and
N.
Mitchell
,
IEEE Trans. Terahertz Sci. Technol.
1
,
450
(
2011
).
6.
I. F.
Akyildiz
,
A.
Kak
, and
S.
Nie
,
IEEE Access
8
,
133995
(
2020
).
7.
F.
Sammoura
,
Y.
Cai
,
C.-Y.
Chi
,
T.
Hirano
,
L. W.
Lin
, and
J.-C.
Chia
, in Transducers ‘05, Digest of Technical Papers (IEEE, 2005), Vols. 1 and 2, p. 1067.
8.
C.
Wang
,
X. W.
Li
,
Y. X.
Huang
,
W. D.
Xu
,
R. Y.
Zhou
,
R. Q.
Wang
,
L. J.
Xie
, and
Y. B.
Ying
,
Opt. Express
26
,
24992
(
2018
).
9.
E. G.
Geterud
,
P.
Bergmark
, and
J.
Yang
, “Lightweight waveguide and antenna components using plating on plastics,” in 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden (IEEE, 2013), p. 1812.
10.
C. D.
Nordquist
,
M. C.
Wanke
,
A. M.
Rowen
,
C. L.
Arrington
,
M.
Lee
, and
A. D.
Grine
, in 2008 IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), Vols. 1–9, p. 3367.
11.
S. S.
Dhillon
,
M. S.
Vitiello
,
E. H.
Linfield
,
A. G.
Davies
,
M. C.
Hoffmann
,
J.
Booske
,
C.
Paoloni
,
M.
Gensch
,
P.
Weightman
,
G. P.
Williams
,
E.
Castro-Camus
,
D. R. S.
Cumming
,
F.
Simoens
,
I.
Escorcia-Carranza
,
J.
Grant
,
S.
Lucyszyn
,
M.
Kuwata-Gonokami
,
K.
Konishi
,
M.
Koch
,
C. A.
Schmuttenmaer
,
T. L.
Cocker
,
R.
Huber
,
A. G.
Markelz
,
Z. D.
Taylor
,
V. P.
Wallace
,
J.
Axel Zeitler
,
J.
Sibik
,
T. M.
Korter
,
B.
Ellison
,
S.
Rea
,
P.
Goldsmith
,
K. B.
Cooper
,
R.
Appleby
,
D.
Pardo
,
P. G.
Huggard
,
V.
Krozer
,
H.
Shams
,
M.
Fice
,
C.
Renaud
,
A.
Seeds
,
A.
Stohr
,
M.
Naftaly
,
N.
Ridler
,
R.
Clarke
,
J. E.
Cunningham
, and
M. B.
Johnston
,
J. Phys. D: Appl. Phys.
50
,
043001
(
2017
).
12.
V.
Desmaris
,
D.
Meledin
,
A.
Pavolotsky
,
R.
Monje
, and
V.
Belitsky
,
J. Micromech. Microeng.
18
,
095004
(
2008
).
13.
C.
Jung-Kubiak
,
T. J.
Reck
,
J. V.
Siles
,
R.
Lin
,
C.
Lee
,
J.
Gill
,
K.
Cooper
,
I.
Mehdi
, and
G.
Chattopadhyay
,
IEEE Trans. Terahertz Sci. Technol.
6
,
690
(
2016
).
14.
R. Y.
Zhu
,
G.
Lipworth
,
T.
Zvolensky
,
D. R.
Smith
, and
D. L.
Marks
,
IEEE Antennas Wirel. Propag. Lett.
16
,
157
(
2017
).
15.
O.
Glubokov
,
X. H.
Zhao
,
J.
Campion
,
B.
Beuerle
,
U.
Shah
, and
J.
Oberhammer
,
IEEE Trans. Microw. Theory Tech.
67
,
3696
(
2019
).
16.
J. Y.
Sun
and
F. J.
Hu
,
Int. J. RF Microw. Comput. Aided Eng.
30
,
e21983
(
2020
).
17.
S.
Lucyszyn
,
F. J.
Hu
, and
W. J.
Otter
, “Technology demonstrators for low-cost terahertz engineering,” in 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, South Korea (IEEE, 2013), p. 518.
18.
H.
Xin
and
M.
Liang
,
Proc. IEEE
105
,
737
(
2017
).
19.
E. T.
Eisenbraun
,
A.
Klaver
,
Z.
Patel
,
G.
Nuesca
, and
A. E.
Kaloyeros
,
J. Vac. Sci. Technol. B
19
,
585
(
2001
).
20.
A. M.
Kia
,
N.
Haufe
,
S.
Esmaeili
,
C.
Mart
,
M.
Utriainen
,
R. L.
Puurunen
, and
W.
Weinreich
,
Nanomaterials
9
,
1035
(
2019
).
21.
T.
Momose
,
T.
Uejima
,
H.
Yamada
,
Y.
Shimogaki
, and
M.
Sugiyama
,
Jpn. J. Appl. Phys.
51
,
056502
(
2012
).
22.
T.
Momose
,
M.
Sugiyama
,
E.
Kondoh
, and
Y.
Shimogaki
,
Appl. Phys. Express
1
,
097002
(
2008
).
23.
J. M.
Blackburn
,
D. P.
Long
,
A.
Cabanas
, and
J. J.
Watkins
,
Science
294
,
141
(
2001
).
24.
V.
Gerasimov
,
B.
Knyazev
,
A.
Nikitin
, and
G.
Zhizhin
,
Appl. Phys. Lett.
98
,
171912
(
2011
).
25.
V. V.
Gerasimov
,
B. A.
Knyazev
,
A. G.
Lemzyakov
,
A. K.
Nikitin
, and
G. N.
Zhizhin
,
J. Opt. Soc. Am. B
33
,
2196
(
2016
).
26.
S.
Atakaramians
,
S.
Afshar
 V
,
T. M.
Monro
, and
D.
Abbott
,
Adv. Opt. Photonics
5
,
169
(
2013
).
27.
Y.
Huang
,
K.
Konishi
,
M.
Deura
,
Y.
Shimoyama
,
J.
Yumoto
,
M.
Kuwata-Gonokami
,
Y.
Shimogaki
, and
T.
Momose
,
J. Appl. Phys.
130
,
055104
(
2021
).
28.
S.
Pandey
,
B.
Gupta
, and
A.
Nahata
,
Opt. Express
21
,
24422
(
2013
).
29.
J.
Hu
,
S. Y.
Xie
, and
Y.
Zhang
,
IEEE Microw. Wirel. Compon. Lett.
22
,
636
(
2012
).
30.
W. R.
McGrath
,
C.
Walker
,
M.
Yap
, and
Y.-C.
Tai
,
IEEE Microw. Guided Wave Lett.
3
,
61
(
1993
).
31.
B.
Bowden
,
J. A.
Harrington
, and
O.
Mitrofanov
,
Opt. Lett.
32
,
2945
(
2007
).
32.
J. A.
Harrington
,
P.
Pedersen
,
B.
Bowden
,
A.
Gmitter
, and
E.
Mueller
, “
Hollow Cu-coated plastic waveguides for the delivery of THz radiation
,”
Proc. SPIE
5727
,
143
(
2005
).
33.
M.
Miyagi
,
A.
Hongo
,
Y.
Aizawa
, and
S.
Kawakami
,
Appl. Phys. Lett.
43
,
430
(
1983
).
34.
Y.
Arita
,
N.
Awaya
,
K.
Ohno
, and
M.
Sato
, “CVD copper metallurgy for ULSI interconnections,” in International Electron Devices Meeting (IEDM) (IEEE, 1990), p. 39.
35.
B.
Zhao
,
T.
Momose
, and
Y.
Shimogaki
,
Jpn. J. Appl. Phys.
45
,
L1296
(
2006
).
36.
J. S.
Huo
,
R.
Solanki
, and
J.
McAndrew
,
J. Mater. Res.
17
,
2394
(
2002
).
37.
M.
Razanoelina
,
S.
Ohashi
,
I.
Kawayama
,
H.
Murakami
,
A. F.
Dégardin
,
A. J.
Kreisler
, and
M.
Tonouchi
,
Opt. Lett.
42
,
3056
(
2017
).
38.
R.
Mendis
and
D. M.
Mittleman
,
J. Opt. Soc. Am. B
26
,
A6
(
2009
).
39.
N.
Laman
and
D.
Grischkowsky
,
Appl. Phys. Lett.
90
,
122115
(
2007
).
40.
N.
Laman
and
D.
Grischkowsky
,
Appl. Phys. Lett.
93
,
051105
(
2008
).
41.
J. W.
Lim
,
K.
Mimura
, and
M.
Isshiki
,
Appl. Surf. Sci.
217
,
95
(
2003
).
42.
K.
Mech
,
R.
Kowalik
, and
P.
Zabinski
,
Arch. Metall. Mater.
56
,
122115
(
2011
).
43.
F.
Sanjuan
and
J. O.
Tocho
, “Optical properties of silicon, sapphire, silica and glass in the terahertz range,” in Latin America Optics and Photonics Conference, OSA Technical Digest (online) (Optica Publishing Group, 2012), p. LT4C. 1.
45.
G.
Gallot
,
S. P.
Jamison
,
R. W.
McGowan
, and
D.
Grischkowsky
,
J. Opt. Soc. Am. B
17
,
851
(
2000
).
46.
S. P.
Jamison
,
R. W.
McGowan
, and
D.
Grischkowsky
,
Appl. Phys. Lett.
76
,
1987
(
2000
).
47.
R.
Mendis
and
D. M.
Mittleman
,
Opt. Express
17
,
14839
(
2009
).
48.
A.
Bandyopadhyay
,
A.
Sengupta
,
V.
Johnson
,
J. A.
Harrington
, and
J. F.
Federici
, “
Characterization of hollow polycarbonate metal waveguides using terahertz time domain spectroscopy
,”
Proc. SPIE
6120
,
61200B
(
2006
).
49.
S.
Lucyszyn
,
PIERS Online
4, 686 (2008).
50.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2014
).
51.
D.
Gall
,
J. Appl. Phys.
127
,
050901
(
2020
).
52.
D.
Gall
,
J. Appl. Phys.
119
,
085101
(
2016
).
53.
S. L.
Udachan
,
N. H.
Ayachit
, and
L. A.
Udachan
,
Ingeniería Universidad
23
, 1 (
2019
).
54.
B.
Singh
and
N.
Surplice
,
Thin Solid Films
10
,
243
(
1972
).
55.
F.
Benson
and
D. H.
Steven
,
Rectangular-Waveguide Attenuation at Millimetre Wavelengths
(
IET
,
1963
), p.
1008
.
56.
S.
Saito
and
K.
Kurokawa
,
Proc. IRE
44
,
35
(
1956
).
57.
A. H.
White
and
L. H.
Germer
,
Trans. Electrochem. Soc.
81
,
305
(
1942
).
58.
T. N.
Rhodin
,
J. Am. Chem. Soc.
72
,
5102
(
1950
).
59.
J. J. D.
Leon
,
D. M.
Fryauf
,
R. D.
Cormia
, and
N. P.
Kobayashi
, “
Study of the formation of native oxide on copper at room temperature
,”
Proc. SPIE
9924
,
99240O
(
2016
).
60.
K.
Singh
,
S.
CK
,
A.
Bandyopadhyay
, and
A.
Sengupta
, “
Characterization of hollow-core-metal waveguide using broadband THz time domain spectroscopy for high-pressure and temperature sensor
,”
Proc. SPIE
11685
,
1168514
(
2021
).
61.
Y. P.
Yang
,
W. Z.
Wang
,
Z. W.
Zhang
,
L. L.
Zhang
, and
C. L.
Zhang
,
J. Phys. Chem. C
115
,
10333
(
2011
).
62.
S. P. P.
Jones
,
S. M.
Gaw
,
K. I.
Doig
,
D.
Prabhakaran
,
E. M. H.
Wheeler
,
A. T.
Boothroyd
, and
J.
Lloyd-Hughes
,
Nat. Commun.
5
,
3787
(
2014
).
63.
X. B.
Shang
,
P.
Penchev
,
C.
Guo
,
M. J.
Lancaster
,
S.
Dimov
,
Y. L.
Dong
,
M.
Favre
,
M.
Billod
, and
E.
de Rijk
,
IEEE Trans. Microw. Theory Tech.
64
,
2572
(
2016
).
64.
A.
von Bieren
,
E.
de Rijk
,
J. P.
Ansermet
, and
A.
Macor
, “Monolithic metal-coated plastic components for mm-wave applications,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Tucson, AZ (IEEE, 2014).
65.
D. M.
Pozar
,
Microwave Engineering
(
John Wiley & Sons
,
2011
).

Supplementary Material

You do not currently have access to this content.