Prussian blue analogs (PBAs) are an important material class for aqueous electrochemical separations and energy storage owing to their ability to reversibly intercalate monovalent cations. However, incorporating interstitial H2O molecules in the ab initio study of PBAs is technically challenging, though essential to understanding the interactions between interstitial water, interstitial cations, and the framework lattice that affect intercalation potential and cation intercalation selectivity. Accordingly, we introduce and use a method that combines the efficiency of machine-learning models with the accuracy of ab initio calculations to elucidate mechanisms of (1) lattice expansion upon intercalation of cations of different sizes, (2) selectivity bias toward intercalating hydrophobic cations of large size, and (3) semiconductor–conductor transitions from anhydrous to hydrated lattices. We analyze the PBA nickel hexacyanoferrate [NiFe(CN)6] due to its structural stability and electrochemical activity in aqueous electrolytes. Here, grand potential analysis is used to determine the equilibrium degree of hydration for a given intercalated cation (Na+, K+, or Cs+) and NiFe(CN)6 oxidation state based on pressure-equilibrated structures determined with the aid of machine learning and simulated annealing. The results imply new directions for the rational design of future cation-intercalation electrode materials that optimize performance in various electrochemical applications, and they demonstrate the importance of choosing an appropriate calculation framework to predict the properties of PBA lattices accurately.

1.
S.
Klink
,
Y.
Ishige
, and
W.
Schuhmann
, “
Prussian blue analogues: A versatile framework for solid-contact ion-selective electrodes with tunable potentials
,”
ChemElectroChem
4
,
490
494
(
2017
).
2.
W.-J.
Li
,
C.
Han
,
G.
Cheng
,
S.-L.
Chou
,
H.-K.
Liu
, and
S.-X.
Dou
, “
Chemical properties, structural properties, and energy storage applications of prussian blue analogues
,”
Small
15
,
1900470
(
2019
).
3.
R.
Chen
,
Y.
Huang
,
M.
Xie
,
Z.
Wang
,
Y.
Ye
,
L.
Li
, and
F.
Wu
, “
Chemical inhibition method to synthesize highly crystalline prussian blue analogs for sodium-ion battery cathodes
,”
ACS Appl. Mater. Interfaces
8
,
31669
31676
(
2016
).
4.
H. L. B.
Boström
,
I. E.
Collings
,
D.
Daisenberger
,
C. J.
Ridley
,
N. P.
Funnell
, and
A. B.
Cairns
, “
Probing the influence of defects, hydration, and composition on prussian blue analogues with pressure
,”
J. Am. Chem. Soc.
143
,
3544
3554
(
2021
).
5.
B.
Xie
,
P.
Zuo
,
L.
Wang
,
J.
Wang
,
H.
Huo
,
M.
He
,
J.
Shu
,
H.
Li
,
S.
Lou
, and
G.
Yin
, “
Achieving long-life prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture
,”
Nano Energy
61
,
201
210
(
2019
).
6.
Z.
Li
,
T.
Liu
,
R.
Meng
,
L.
Gao
,
Y.
Zou
,
P.
Peng
,
Y.
Shao
, and
X.
Liang
, “
Insights into the structure stability of prussian blue for aqueous zinc ion batteries
,”
Energy Environ. Mater.
4
,
111
116
(
2021
).
7.
A.
Shrivastava
,
S.
Liu
, and
K. C.
Smith
, “
Linking capacity loss and retention of nickel hexacyanoferrate to a two-site intercalation mechanism for aqueous Mg2+ and Ca2+ ions
,”
Phys. Chem. Chem. Phys.
21
,
20177
20188
(
2019
).
8.
M.
Oliver-Tolentino
,
G.
Ramos-Sánchez
,
G.
Guzmán
,
M.
Avila
,
I.
González
, and
E.
Reguera
, “
Water effect on sodium mobility in zinc hexacyanoferrate during charge/discharge processes in sodium ion-based battery
,”
Solid State Ionics
312
,
67
72
(
2017
).
9.
B.
Xie
,
L.
Wang
,
J.
Shu
,
X.
Zhou
,
Z.
Yu
,
H.
Huo
,
Y.
Ma
,
X.
Cheng
,
G.
Yin
, and
P.
Zuo
, “
Understanding the structural evolution and lattice water movement for rhombohedral nickel hexacyanoferrate upon sodium migration
,”
ACS Appl. Mater. Interfaces
11
,
46705
46713
(
2019
).
10.
M.
Okubo
,
D.
Asakura
,
Y.
Mizuno
,
J.-D.
Kim
,
T.
Mizokawa
,
T.
Kudo
, and
I.
Honma
, “
Switching redox-active sites by valence tautomerism in prussian blue analogues AxMny[Fe(CN)6]⋅ nH2O (A: K, Rb): Robust frameworks for reversible Li storage
,”
J. Phys. Chem. Lett.
1
,
2063
2071
(
2010
).
11.
Y.
Mizuno
,
M.
Okubo
,
E.
Hosono
,
T.
Kudo
,
H.
Zhou
, and
K.
Oh-ishi
, “
Suppressed activation energy for interfacial charge transfer of a prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg+)
,”
J. Phys. Chem. C
117
,
10877
10882
(
2013
).
12.
J.
Wu
,
J.
Song
,
K.
Dai
,
Z.
Zhuo
,
L. A.
Wray
,
G.
Liu
,
Z.-X.
Shen
,
R.
Zeng
,
Y.
Lu
, and
W.
Yang
, “
Modification of transition-metal redox by interstitial water in hexacyanometalate electrodes for sodium-ion batteries
,”
J. Am. Chem. Soc.
139
,
18358
18364
(
2017
).
13.
C. D.
Wessells
,
S. V.
Peddada
,
M. T.
McDowell
,
R. A.
Huggins
, and
Y.
Cui
, “
The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes
,”
J. Electrochem. Soc.
159
,
A98
(
2011
).
14.
T.
Ikeshoji
, “
Separation of alkali metal ions by intercalation into a prussian blue electrode
,”
J. Electrochem. Soc.
133
,
2108
(
1986
).
15.
K.
Itaya
,
T.
Ataka
, and
S.
Toshima
, “
Spectroelectrochemistry and electrochemical preparation method of prussian blue modified electrodes
,”
J. Am. Chem. Soc.
104
,
4767
4772
(
1982
).
16.
S.
Rassat
,
J.
Sukamto
,
R.
Orth
,
M.
Lilga
, and
R.
Hallen
, “
Development of an electrically switched ion exchange process for selective ion separations
,”
Sep. Purif. Technol.
15
,
207
222
(
1999
).
17.
B.
Sun
,
X. G.
Hao
,
Z. D.
Wang
,
G. Q.
Guan
,
Z. L.
Zhang
,
Y. B.
Li
, and
S. B.
Liu
, “
Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis
,”
J. Hazard. Mater.
233-234
,
177
183
(
2012
).
18.
K. C.
Smith
, “
Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination
,”
Electrochim. Acta
230
,
333
341
(
2017
).
19.
S.
Porada
,
A.
Shrivastava
,
P.
Bukowska
,
P. M.
Biesheuvel
, and
K. C.
Smith
, “
Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water
,”
Electrochim. Acta
255
,
369
378
(
2017
).
20.
J.
Lee
,
S.
Kim
, and
J.
Yoon
, “
Rocking chair desalination battery based on prussian blue electrodes
,”
ACS Omega
2
,
1653
1659
(
2017
).
21.
E. R.
Reale
,
A.
Shrivastava
, and
K. C.
Smith
, “
Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization
,”
Water Res.
165
,
114995
(
2019
).
22.
K.
Singh
,
Z.
Qian
,
P.
Biesheuvel
,
H.
Zuilhof
,
S.
Porada
, and
L. C.
de Smet
, “
Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization
,”
Desalination
481
,
114346
(
2020
).
23.
E.
Sebti
,
M. M.
Besli
,
M.
Metzger
,
S.
Hellstrom
,
M. J.
Schultz-Neu
,
J.
Alvarado
,
J.
Christensen
,
M.
Doeff
,
S.
Kuppan
, and
C. V.
Subban
, “
Removal of Na+ and Ca2+ with prussian blue analogue electrodes for brackish water desalination
,”
Desalination
487
,
114479
(
2020
).
24.
V.
Pothanamkandathil
,
J.
Fortunato
, and
C. A.
Gorski
, “
Electrochemical desalination using intercalating electrode materials: A comparison of energy demands
,”
Environ. Sci. Technol.
54
,
3653
3662
(
2020
).
25.
E. R.
Reale
,
L.
Regenwetter
,
A.
Agrawal
,
B.
Dardón
,
N.
Dicola
,
S.
Sanagala
, and
K. C.
Smith
, “
Low porosity, high areal-capacity prussian blue analogue electrodes enhance salt removal and thermodynamic efficiency in symmetric Faradaic deionization with automated fluid control
,”
Water Res. X
13
,
100116
(
2021
).
26.
S.
Liu
and
K. C.
Smith
, “
Linking the polyatomic arrangements of interstitial H2O and cations to bonding within prussian blue analogues ab initio using gradient-boosted machine learning
,”
Phys. Rev. Mater.
5
,
035003
(
2021
).
27.
X.
Wu
,
J. J.
Hong
,
W.
Shin
,
L.
Ma
,
T.
Liu
,
X.
Bi
,
Y.
Yuan
,
Y.
Qi
,
T. W.
Surta
,
W.
Huang
,
J.
Neuefeind
,
T.
Wu
,
P. A.
Greaney
,
J.
Lu
, and
X.
Ji
, “
Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries
,”
Nat. Energy
4
,
123
130
(
2019
).
28.
L.
Wang
,
Y.
Lu
,
J.
Liu
,
M.
Xu
,
J.
Cheng
,
D.
Zhang
, and
J. B.
Goodenough
, “
A superior low-cost cathode for a Na-ion battery
,”
Angew. Chem.
125
,
2018
2021
(
2013
).
29.
C.
Duan
,
Y.
Meng
,
Y.
Wang
,
Z.
Zhang
,
Y.
Ge
,
X.
Li
,
Y.
Guo
, and
D.
Xiao
, “
High-crystallinity and high-rate prussian blue analogues synthesized at the oil–water interface
,”
Inorg. Chem. Front.
8
,
2008
2016
(
2021
).
30.
L.
Li
,
Z.
Hu
,
Y.
Lu
,
C.
Wang
,
Q.
Zhang
,
S.
Zhao
,
J.
Peng
,
K.
Zhang
,
S.-L.
Chou
, and
J.
Chen
, “
A low-strain potassium-rich prussian blue analogue cathode for high power potassium-ion batteries
,”
Angew. Chem. Int. Ed.
60
,
13050
(
2021
).
31.
J.
Song
,
L.
Wang
,
Y.
Lu
,
J.
Liu
,
B.
Guo
,
P.
Xiao
,
J.-J.
Lee
,
X.-Q.
Yang
,
G.
Henkelman
, and
J. B.
Goodenough
, “
Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery
,”
J. Am. Chem. Soc.
137
,
2658
2664
(
2015
).
32.
H. L.
Boström
,
I. E.
Collings
,
A. B.
Cairns
,
C. P.
Romao
, and
A. L.
Goodwin
, “
High-pressure behaviour of prussian blue analogues: Interplay of hydration, Jahn-Teller distortions and vacancies
,”
Dalton Trans.
48
,
1647
1655
(
2019
).
33.
L.
Guadagnini
,
D.
Tonelli
, and
M.
Giorgetti
, “
Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection
,”
Electrochim. Acta
55
,
5036
5039
(
2010
).
34.
Y.
Li
,
Q.
Gao
,
D.
Chang
,
P.
Sun
,
J.
Liu
,
Y.
Jia
,
E.
Liang
, and
Q.
Sun
, “
Effect of bond on negative thermal expansion of prussian blue analogues MCo(CN)6 (M= Fe, Ti and Sc): A first-principles study
,”
J. Phys.: Condens. Matter.
32
,
455703
(
2020
).
35.
M.
Jiang
,
X.
Fan
,
S.
Cao
,
Z.
Wang
,
Z.
Yang
, and
W.
Zhang
, “
Thermally activated carbon–nitrogen vacancies in double-shelled NiFe prussian blue analogue nanocages for enhanced electrocatalytic oxygen evolution
,”
J. Mater. Chem. A
9
,
12734
12745
(
2021
).
36.
P.
Nie
,
J.
Yuan
,
J.
Wang
,
Z.
Le
,
G.
Xu
,
L.
Hao
,
G.
Pang
,
Y.
Wu
,
H.
Dou
,
X.
Yan
et al., “
Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries
,”
ACS Appl. Mater. Interfaces
9
,
20306
20312
(
2017
).
37.
X.
Guo
,
Z.
Wang
,
Z.
Deng
,
X.
Li
,
B.
Wang
,
X.
Chen
, and
S. P.
Ong
, “
Water contributes to higher energy density and cycling stability of prussian blue analogue cathodes for aqueous sodium-ion batteries
,”
Chem. Mater.
31
,
5933
5942
(
2019
).
38.
L.
Chen
,
L.
Cao
,
X.
Ji
,
S.
Hou
,
Q.
Li
,
J.
Chen
,
C.
Yang
,
N.
Eidson
, and
C.
Wang
, “
Enabling safe aqueous lithium ion open batteries by suppressing oxygen reduction reaction
,”
Nat. Commun.
11
,
2638
(
2020
).
39.
S.
Liu
and
K. C.
Smith
, “
Intercalated cation disorder in prussian blue analogues: First-principles and grand canonical analyses
,”
J. Phys. Chem. C
123
,
10191
10204
(
2019
).
40.
Y.
Tang
,
W.
Li
,
P.
Feng
,
M.
Zhou
,
K.
Wang
, and
K.
Jiang
, “
Investigation of alkali-ion (Li, Na and K) intercalation in manganese hexacyanoferrate KxMnFe(CN)6 as cathode material
,”
Chem. Eng. J.
396
,
125269
(
2020
).
41.
H.
Tang
,
J.
Tao
,
J. P.
Perdew
et al., “
Density functionals combined with van der Waals corrections for graphene adsorbed on layered materials
,”
Phys. Rev. B
101
,
195426
(
2020
).
42.
G.
Sai Gautam
,
P.
Canepa
,
W. D.
Richards
,
R.
Malik
, and
G.
Ceder
, “
Role of structural H2O in intercalation electrodes: The case of Mg in nanocrystalline Xerogel-V2O5
,”
Nano Lett.
16
,
2426
2431
(
2016
), pMID: 26982964.
43.
P.
Xiao
,
J.
Song
,
L.
Wang
,
J. B.
Goodenough
, and
G.
Henkelman
, “
Theoretical study of the structural evolution of a Na2FeMn(CN)6 cathode upon Na intercalation
,”
Chem. Mater.
27
,
3763
3768
(
2015
).
44.
O.
Egorova
,
R.
Hafizi
,
D. C.
Woods
, and
G. M.
Day
, “
Multifidelity statistical machine learning for molecular crystal structure prediction
,”
J. Phys. Chem. A
124
,
8065
8078
(
2020
).
45.
K.
Kobayashi
,
H.
Nakamura
,
A.
Yamaguchi
,
M.
Itakura
,
M.
Machida
, and
M.
Okumura
, “
Machine learning potentials for tobermorite minerals
,”
Comput. Mater. Sci.
188
,
110173
(
2021
).
46.
V.
Quaranta
,
J.
Behler
, and
M.
Hellström
, “
Structure and dynamics of the liquid–water/zinc-oxide interface from machine learning potential simulations
,”
J. Phys. Chem. C
123
,
1293
1304
(
2018
).
47.
S.
Dasetty
,
P. J.
Meza-Morales
,
R. B.
Getman
, and
S.
Sarupria
, “
Simulations of interfacial processes: Recent advances in force field development
,”
Curr. Opin. Chem. Eng.
23
,
138
145
(
2019
).
48.
Y.
Li
,
H.
Li
,
F. C.
Pickard IV
,
B.
Narayanan
,
F. G.
Sen
,
M. K.
Chan
,
S. K.
Sankaranarayanan
,
B. R.
Brooks
, and
B.
Roux
, “
Machine learning force field parameters from ab initio data
,”
J. Chem. Theory Comput.
13
,
4492
4503
(
2017
).
49.
F.
Paesani
, “
Getting the right answers for the right reasons: Toward predictive molecular simulations of water with many-body potential energy functions
,”
Acc. Chem. Res.
49
,
1844
1851
(
2016
).
50.
O.
Sode
and
J. N.
Cherry
, “
Development of a flexible-monomer two-body carbon dioxide potential and its application to clusters up to (CO2)13
,”
J. Comput. Chem.
38
,
2763
2774
(
2017
).
51.
P.
Bajaj
,
A. W.
Gotz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. I. Halide–water dimer potential energy surfaces
,”
J. Chem. Theory Comput.
12
,
2698
2705
(
2016
).
52.
M.
Riera
,
N.
Mardirossian
,
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. alkali-water dimer potential energy surfaces
,”
J. Chem. Phys.
147
,
161715
(
2017
).
53.
M.
Riera
,
E. P.
Yeh
, and
F.
Paesani
, “
Data-driven many-body models for molecular fluids: CO2/H2O mixtures as a case study
,”
J. Chem. Theory Comput.
16
,
2246
2257
(
2020
).
54.
E.
Lambros
,
S.
Dasgupta
,
E.
Palos
,
S.
Swee
,
J.
Hu
, and
F.
Paesani
, “
General many-body framework for data-driven potentials with arbitrary quantum mechanical accuracy: Water as a case study
,”
J. Chem. Theory Comput.
17
,
5635
5650
(
2021
).
55.
P.
Giannozzi
,
O.
Baseggio
,
P.
Bonfà
,
D.
Brunato
,
R.
Car
,
I.
Carnimeo
,
C.
Cavazzoni
,
S.
De Gironcoli
,
P.
Delugas
,
F.
Ferrari Ruffino
et al., “
Quantum espresso toward the exascale
,”
J. Chem. Phys.
152
,
154105
(
2020
).
56.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
57.
R.
Sabatini
,
T.
Gorni
, and
S.
De Gironcoli
, “
Nonlocal van der Waals density functional made simple and efficient
,”
Phys. Rev. B
87
,
041108
(
2013
).
58.
S.
Adhikari
,
H.
Tang
,
B.
Neupane
,
A.
Ruzsinszky
, and
G. I.
Csonka
, “
Molecule-surface interaction from van der Waals-corrected semilocal density functionals: The example of thiophene on transition-metal surfaces
,”
Phys. Rev. Mater.
4
,
025005
(
2020
).
59.
H.
Tang
,
J. P.
Perdew
et al., “
van der Waals corrected density functionals for cylindrical surfaces: Ammonia and nitrogen dioxide adsorbed on a single-walled carbon nanotube
,”
Phys. Rev. B
103
,
195410
(
2021
).
60.
V. L.
Deringer
,
M. A.
Caro
, and
G.
Csányi
, “
A general-purpose machine-learning force field for bulk and nanostructured phosphorus
,”
Nat. Commun.
11
,
1
11
(
2020
).
61.
M.
Verdaguer
and
G. S.
Girolami
, “Magnetic prussian blue analogs,” in Magnetism: Molecules to Materials V (Wiley-VCH, 2005), Vol. 5, pp. 283–346.
62.
M.
Cammarata
,
S.
Zerdane
,
L.
Balducci
,
G.
Azzolina
,
S.
Mazerat
,
C.
Exertier
,
M.
Trabuco
,
M.
Levantino
,
R.
Alonso-Mori
,
J. M.
Glownia
et al., “
Charge transfer driven by ultrafast spin transition in a CoFe prussian blue analogue
,”
Nat. Chem.
13
,
10
14
(
2021
).
63.
J.
Kanamori
, “
Superexchange interaction and symmetry properties of electron orbitals
,”
J. Phys. Chem. Solids
10
,
87
98
(
1959
).
64.
V.
Kavečanskỳ
,
M.
Mihalik
,
Z.
Mitróová
,
M.
Lukáčová
, and
S.
Mat’aš
, “
Neutron diffraction study of crystal and magnetic structure of Dy[Fe(CN)6] 4D2O
,”
Czech. J. Phys.
54
,
571
574
(
2004
).
65.
N.
Yanai
,
W.
Kaneko
,
K.
Yoneda
,
M.
Ohba
, and
S.
Kitagawa
, “
Reversible water-induced magnetic and structural conversion of a flexible microporous Ni(II)Fe(III) ferromagnet
,”
J. Am. Chem. Soc.
129
,
3496
3497
(
2007
).
66.
L.
Talirz
,
S.
Kumbhar
,
E.
Passaro
,
A. V.
Yakutovich
,
V.
Granata
,
F.
Gargiulo
,
M.
Borelli
,
M.
Uhrin
,
S. P.
Huber
,
S.
Zoupanos
et al., “
Materials cloud, a platform for open computational science
,”
Sci. Data
7
,
1
12
(
2020
).
67.
T.
Maxisch
,
F.
Zhou
, and
G.
Ceder
, “
Ab initio study of the migration of small polarons in olivine LixFePo4 and their association with lithium ions and vacancies
,”
Phys. Rev. B
73
,
104301
(
2006
).
68.
W. H.
Sio
,
C.
Verdi
,
S.
Poncé
, and
F.
Giustino
, “
Ab initio theory of polarons: Formalism and applications
,”
Phys. Rev. B
99
,
235139
(
2019
).
69.
K.
Hurlbutt
,
S.
Wheeler
,
I.
Capone
, and
M.
Pasta
, “
Prussian blue analogs as battery materials
,”
Joule
2
,
1950
1960
(
2018
).
70.
A.
Mullaliu
,
P.
Conti
,
G.
Aquilanti
,
J. R.
Plaisier
,
L.
Stievano
, and
M.
Giorgetti
, “
Operando XAFS and XRD study of a prussian blue analogue cathode material: Iron hexacyanocobaltate
,”
Condens. Matter
3
,
36
(
2018
).
71.
Y.
Xu
,
J.
Wan
,
L.
Huang
,
M.
Ou
,
C.
Fan
,
P.
Wei
,
J.
Peng
,
Y.
Liu
,
Y.
Qiu
,
X.
Sun
et al., “
Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries
,”
Adv. Energy Mater.
9
,
1803158
(
2019
).
72.
W. L.
Koltun
, “Space filling atomic units and connectors for molecular models,” U.S. patent 3,170,246 (February 23, 1965).
73.
Q.
Gao
,
N.
Shi
,
A.
Sanson
,
Y.
Sun
,
R.
Milazzo
,
L.
Olivi
,
H.
Zhu
,
S. H.
Lapidus
,
L.
Zheng
,
J.
Chen
, and
X.
Xing
, “
Tunable thermal expansion from negative, zero, to positive in cubic prussian blue analogues of GaFe(CN)6
,”
Inorg. Chem.
57
,
14027
(
2018
).
74.
E. E.
Dahlke
and
D. G.
Truhlar
, “
Improved density functionals for water
,”
J. Phys. Chem. B
109
,
15677
15683
(
2005
).
75.
J. M.
del Campo
,
J. L.
Gázquez
,
S.
Trickey
, and
A.
Vela
, “
Non-empirical improvement of PBE and its hybrid PBE0 for general description of molecular properties
,”
J. Chem. Phys.
136
,
104108
(
2012
).
76.
H.
Peng
and
J. P.
Perdew
, “
Rehabilitation of the Perdew-Burke-Ernzerhof generalized gradient approximation for layered materials
,”
Phys. Rev. B
95
,
081105
(
2017
).
77.
J.
Cha
,
S.
Lim
,
C. H.
Choi
,
M.-H.
Cha
, and
N.
Park
, “
Inaccuracy of density functional theory calculations for dihydrogen binding energetics onto Ca cation centers
,”
Phys. Rev. Lett.
103
,
216102
(
2009
).
78.
Y.
Ohk
,
Y.-H.
Kim
, and
Y.
Jung
, “
Comment on ‘Inaccuracy of density functional theory calculations for dihydrogen binding energetics onto Ca cation centers
,’”
Phys. Rev. Lett.
104
,
179601
(
2010
).
79.
J.
Schmidt
,
J.
VandeVondele
,
I.-F. W.
Kuo
,
D.
Sebastiani
,
J. I.
Siepmann
,
J.
Hutter
, and
C. J.
Mundy
, “
Isobaric-isothermal molecular dynamics simulations utilizing density functional theory: An assessment of the structure and density of water at near-ambient conditions
,”
J. Phys. Chem. B
113
,
11959
11964
(
2009
).
80.
S.
Kiyabu
,
J. S.
Lowe
,
A.
Ahmed
, and
D. J.
Siegel
, “
Computational screening of hydration reactions for thermal energy storage: New materials and design rules
,”
Chem. Mater.
30
,
2006
2017
(
2018
).
81.
K. S.
Pitzer
, “Ion interaction approach: Theory and data correlation,” in Activity Coefficients in Electrolyte Solutions (CRC Press, 2018), pp. 75–153.
82.
M. P.
Humphreys
and
A. J.
Schiller
, “Pytzer: The Pitzer model for chemical activities and equilibria in aqueous solutions in python (beta)” (2021).
83.
P.
Vanysek
, “Electrochemical series,” in CRC Handbook of Chemistry and Physics (CRC Press, 2000), Vol. 8.
84.
J. E.
Mayer
,
Equilibrium Statistical Mechanics
(
Elsevier
,
2013
), Vol. 1.
85.
P.
Peter Atkins
and
J.
De Paula
,
Atkins’ Physical Chemistry
(
OUP Oxford
,
2014
).
86.
J.
Fischer
,
R. R.
Gamache
,
A.
Goldman
,
L. S.
Rothman
, and
A.
Perrin
, “
Total internal partition sums for molecular species in the 2000 edition of the HITRAN database
,”
J. Quant. Spectrosc. Radiat. Transfer
82
,
401
412
(
2003
).
87.
L.
Chen
,
H.
Shao
,
X.
Zhou
,
G.
Liu
,
J.
Jiang
, and
Z.
Liu
, “
Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics
,”
Nat. Commun.
7
,
11982
(
2016
).
88.
C.
Wei
,
X.-Y.
Fu
,
L.-L.
Zhang
,
J.
Liu
,
P.-P.
Sun
,
L.
Gao
,
K.-J.
Chang
, and
X.-L.
Yang
, “
Structural regulated nickel hexacyanoferrate with superior sodium storage performance by k-doping
,”
Chem. Eng. J.
421
,
127760
(
2021
).
89.
J. C.
Wojdeł
and
S. T.
Bromley
, “
Efficient calculation of the structural and electronic properties of mixed valence materials: Application to prussian blue analogues
,”
Chem. Phys. Lett.
397
,
154
159
(
2004
).
90.
R.
Englman
and
R.
Englman
,
The Jahn-Teller Effect in Molecules and Crystals
(
Wiley-Interscience
,
New York
,
1972
).
91.
D.
Meggiolaro
,
F.
Ambrosio
,
E.
Mosconi
,
A.
Mahata
, and
F.
De Angelis
, “
Polarons in metal halide perovskites
,”
Adv. Energy Mater.
10
,
1902748
(
2020
).
92.
Z.
Fang
,
Y.
Yin
,
X.
Qiu
,
L.
Zhu
,
X.
Dong
,
Y.
Wang
, and
Y.
Xia
, “
Prussian blue cathode with intercalation pseudocapacitive behavior for low-temperature batteries
,”
Adv. Energy Sustain. Res.
2
,
2100105
(
2021
).
93.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
et al., “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
,
62
74
(
2014
).

Supplementary Material

You do not currently have access to this content.