Understanding the motion of colloidal particles flowing in small spaces is a general issue in various fields such as thermal engineering and micro/nanofluidics. In the present study, we investigated the motion of fluorescent submicrometer particles in a 3-μm microchannel by defocusing nanoparticle image velocimetry. An optical measurement system with controlled spherical aberration and an algorithm for processing defocused particle images with multiple diffraction rings were developed. By detecting the centroid position and the diameter of the outermost diffraction ring, which is proportional to the distance between the focal plane and the particle, the position of particles was determined with the spatial resolutions of 154–204 nm in the streamwise direction and 76–311 nm in the depthwise direction, which are comparable to or smaller than the optical diffraction limit. A reusable microfluidic device containing a size-regulated microchannel made of glass was developed, which is suitable for optical measurements and precise flow control. By controlling the strength of low-temperature glass bonding, detachment of the bonded glass substrates, washing, and reuse were achieved. Based on this method and technology, the velocity of particles with diameters of 199, 457, and 1114 nm was successfully measured in pressure-driven laminar flow. Results suggested that for larger particles comparable to the channel size, the particle velocity is slowed from the flow velocity by particle–wall hydrodynamic interactions. Therefore, the motion of colloidal particles in 100-μm spaces is considered to be affected by particle–wall hydrodynamic interactions, as well as 102-μm spaces reported previously.

1.
G. P.
Peterson
,
Appl. Mech. Rev.
45
,
175
189
(
1992
).
2.
D.
Khrustalev
and
A.
Faghri
,
J. Heat Transfer
116
,
189
198
(
1994
).
3.
X.
Ye
,
Y.
Zhao
, and
Z.
Quan
,
Appl. Thermal Eng.
130
,
74
82
(
2018
).
4.
Y.
Li
,
J.
Zhou
,
S.
Tung
,
E.
Schneider
, and
S.
Xi
,
Powder Technol.
196
,
89
101
(
2009
).
5.
O.
Mahian
,
L.
Kolsi
,
M.
Amani
,
P.
Estellé
,
G.
Ahmadi
,
C.
Kleinstreuer
,
J. S.
Marshall
,
M.
Siavashi
,
R. A.
Taylor
,
H.
Niazmand
,
S.
Wongwises
,
T.
Hayat
,
A.
Kolanjiyil
,
A.
Kasaeian
, and
I.
Pop
,
Phys. Rep.
790
,
1
48
(
2019
).
6.
K. H.
Do
and
S. P.
Jang
,
Int. J. Heat Mass Transfer
53
,
2183
2192
(
2010
).
7.
J.
Zhang
,
Y. H.
Diao
,
Y. H.
Zhao
,
X.
Tang
,
W. J.
Yu
, and
S.
Wang
,
Energy Convers. Manage.
75
,
609
616
(
2013
).
8.
J. G.
Santiago
,
S. T.
Wereley
,
C. D.
Meinhart
,
D. J.
Beebe
, and
R. J.
Adrian
,
Exp. Fluids
25
,
316
319
(
1998
).
9.
H.
Amini
,
W.
Lee
, and
D.
Di Carlo
,
Lab Chip
14
,
2739
2761
(
2014
).
10.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N.-T.
Nguyen
,
M. E.
Warkiani
, and
W.
Li
,
Lab Chip
16
,
10
34
(
2016
).
11.
M. E.
Staben
,
A. Z.
Zinchenko
, and
R. H.
Davis
,
Phys. Fluids
15
,
1711
1733
(
2003
).
12.
M. E.
Staben
and
R. H.
Davis
,
Int. J. Multiphase Flow
31
,
529
547
(
2005
).
13.
Y.
Kazoe
,
K.
Iseki
,
K.
Mawatari
, and
T.
Kitamori
,
Anal. Chem.
85
,
10780
10786
(
2013
).
14.
Y.
Kazoe
,
K.
Mawatari
, and
T.
Kitamori
,
Anal. Chem.
87
,
4087
4091
(
2015
).
15.
Y.
Kazoe
,
K.
Shibata
, and
T.
Kitamori
,
Anal. Chem.
93
,
13260
13267
(
2021
).
16.
K.
Shoda
,
M.
Tanaka
,
K.
Mino
, and
Y.
Kazoe
,
Micromachines
11
,
804
(
2020
).
17.
A.
Rodriguez
,
H.
Zhang
,
K.
Wiklund
,
T.
Brodin
,
J.
Klaminder
,
P.
Andersson
, and
M.
Andersson
,
PLoS One
12
,
e0175015
(
2017
).
18.
C.
Wang
,
H.
Fang
,
S.
Zhou
,
X.
Qi
,
F.
Niu
,
W.
Zhang
,
Y.
Tian
, and
T.
Suga
,
J. Mater. Sci. Technol.
46
,
156
167
(
2020
).
19.
W. P.
Maszara
,
G.
Goetz
,
A.
Caviglia
, and
J. B.
McKitterick
,
J. Appl. Phys.
64
,
4943
4950
(
1988
).
20.
Y.
Xu
,
C.
Wang
,
Y.
Dong
,
L.
Li
,
K.
Jang
,
K.
Mawatari
,
T.
Suga
, and
T.
Kitamori
,
Anal. Bioanal. Chem.
402
,
1011
1018
(
2012
).
21.
Y.
Xu
,
C.
Wang
,
L.
Li
,
N.
Matsumoto
,
K.
Jang
,
Y.
Dong
,
K.
Mawatari
,
T.
Suga
, and
T.
Kitamori
,
Lab Chip
13
,
1048
1052
(
2013
).
22.
R.
Ohta
,
K.
Mawatari
,
T.
Takeuchi
,
K.
Morikawa
, and
T.
Kitamori
,
Biomicrofluidics
13
,
024104
(
2019
).
23.
W. M.
Deen
,
Analysis of Transport Phenomena
(
Oxford University Press
,
New York
,
1998
).
24.
H.
Li
and
M.
Yoda
,
J. Fluid Mech.
662
,
269
287
(
2010
).
25.
Y.
Kazoe
and
M.
Yoda
,
Langmuir
27
,
11481
11488
(
2011
).
You do not currently have access to this content.