Significant characteristics of the superconducting transitions reported for carbonaceous sulfur hydride [Snider et al., Nature 585, 373 (2020)] are the exceptionally abrupt onset temperatures and their marked increase toward room temperature at high pressures. Theoretical and experimental studies addressing the superconducting composition and structure have thus far returned mixed results. One possibility, consistent with the experimentally suggested stoichiometry of CSHx, is the theoretically discovered compressed I4¯3m CSH7 structure [Sun et al., Phys. Rev. B 101, 174102 (2020)], which comprises a sublattice similar to Im3¯m H3S with CH4 intercalates. Positing an electronic genesis of the superconductivity, a model is presented in analogy with earlier work on superconductivity in Im3¯m H3S, in which pairing is induced via purely electronic Coulomb interactions across the mean distance ζ between the S and H4-tetrahedra enclosing C. Theoretical superconducting transition temperatures for I4¯3m CSH7 are derived as TC0 = (2/3)1/2σ1/2β/aζ, where β = 1247.4 Å2 K is a universal constant, σ is the participating charge fraction, and a is the lattice parameter. Analysis suggests persistent bulk superconductivity with a pressure-dependent σ, increasing from σ = 3.5, determined previously for Im3¯m H3S, to σ = 7.5 at high pressure owing to additionally participating C–H bond electrons. With a and ζ determined by theoretical structure, TC0 = 283.6 ± 3.5 K is predicted at 267 ± 10 GPa, in excellent agreement (within uncertainty) with the corresponding experimental TC = 287.7 ± 1.2 K. Pressure-induced variations in σ combined with experimental uncertainties in pressure yield overall average (TC − TC0) = (−0.8 ± 3.5) K.

1.
E.
Snider
,
N.
Dasenbrock-Gammon
,
R.
McBride
,
M.
Debessai
,
H.
Vindana
,
K.
Vencatasamy
,
K. V.
Lawler
,
A.
Salamat
, and
R. P.
Dias
, “
Room-temperature superconductivity in a carbonaceous sulfur hydride
,”
Nature
586
,
373
(
2020
).
2.
A. P.
Drozdov
,
P. P.
Kong
,
V. S.
Minkov
,
S. P.
Besedin
,
M. A.
Kuzovnikov
,
S.
Mozaffari
,
L.
Balicas
,
F. F.
Balakirev
,
D. E.
Graf
,
V. B.
Prakapenka
,
E.
Greenberg
,
D. A.
Knyazev
,
M.
Tkacz
, and
M. I.
Eremets
, “
Superconductivity at 250 K in lanthanum hydride under high pressures
,”
Nature
569
,
528
(
2019
).
3.
M.
Somayazulu
,
M.
Ahart
,
A. K.
Mishra
,
Z. M.
Geballe
,
M.
Baldini
,
Y.
Meng
,
V. V.
Struzhkin
, and
R. J.
Hemley
, “
Evidence of superconductivity above 260 K in lanthanum superhydride at megabar pressures
,”
Phys. Rev. Lett.
122
,
027001
(
2019
).
4.
V.
Struzhkin
,
B.
Li
,
C.
Ji
,
X.-J.
Chen
,
V.
Prakapenka
,
E.
Greenberg
,
I.
Troyan
,
A.
Gavriliuk
, and
H.-k.
Mao
, “
Superconductivity in La and Y hydrides: Remaining questions to experiment and theory
,”
Matter Radiat. Extremes
5
,
028201
(
2020
).
5.
M. L.
Kulić
, “High pressure RTSC-hydrides are extreme hard type-II superconductors,” arXiv:2104.12214v1 [cond-mat.supr-con] (2021).
6.
J. E.
Hirsch
and
F.
Marsiglio
, “
Flux trapping in superconducting hydrides under high pressure
,”
Physica C
589
,
1353916
(
2021
).
7.
M.
Dogan
and
M. L.
Cohen
, “
Anomalous behavior in high-pressure carbonaceous sulfur hydride
,”
Physica C
583
,
1353851
(
2021
).
8.
J. E.
Hirsch
and
F.
Marsiglio
, “
Absence of magnetic evidence for superconductivity in hydrides under high pressure
,”
Physica C
584
,
1353866
(
2020
).
9.
A.
Lamichhane
,
R.
Kumar
,
M.
Ahart
,
N. P.
Salke
,
N.
Dasenbrock-Gammon
,
E.
Snider
,
Y.
Meng
,
B.
Lavina
,
S.
Chariton
,
V. B.
Prakapenka
,
M.
Somayazulu
,
R. P.
Dias
, and
R. J.
Hemley
, “
X-ray diffraction and equation of state of the C-S-H room-temperature superconductor
,”
J. Chem. Phys.
155
,
114703
(
2021
).
10.
E.
Bykova
,
M.
Bykov
,
S.
Chariton
,
V. B.
Prakapenka
,
K.
Glazyrin
,
A.
Aslandukov
,
A.
Aslandukova
,
G.
Criniti
,
A.
Kurnosov
, and
A. F.
Goncharov
, “
Structure and composition of C-S-H compounds up to 143 GPa
,”
Phys. Rev. B
103
,
L140105
(
2021)
.
11.
Y.
Ge
,
F.
Zhang
,
R. P.
Dias
,
R. J.
Hemley
, and
Y.
Yao
, “
Hole-doped room-temperature superconductivity in H3S1–xZx (Z = C, Si)
,”
Mater. Today Phys.
15
,
100330
(
2020
).
12.
S. X.
Hu
,
R.
Paul
,
V. V.
Karasiev
, and
R. P.
Dias
, “Carbon-doped sulfur hydrides as room-temperature superconductors at 270 GPa,” arXiv:2012.10259v1 [cond-mat.supr-con] (2020).
13.
T.
Wang
,
M.
Hirayama
,
T.
Nomoto
,
T.
Koretsune
,
R.
Arita
, and
J. A.
Flores-Livas
, “
Absence of conventional room-temperature superconductivity at high pressure in carbon doped H3S
,”
Phys. Rev. B
104
,
064510
(
2021
).
14.
Y.
Sun
,
Y.
Tian
,
B.
Jiang
,
X.
Li
,
H.
Li
,
T.
Iitaka
,
X.
Zhong
, and
Y.
Xie
, “
Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation
,”
Phys. Rev. B
101
,
174102
(
2020
).
15.
W.
Cui
,
T.
Bi
,
J.
Shi
,
Y.
Li
,
H.
Liu
,
E.
Zurek
, and
R. J.
Hemley
, “
Route to high-TC superconductivity via CH4-intercalated H3S hydride perovskites
,”
Phys. Rev. B
101
,
134504
(
2020
).
16.
M.
Du
,
Z.
Zhang
,
T.
Cui
, and
D.
Duan
, “Superconductivity of CH4-intercalated H3S under high pressure,” arXiv:2107.10485v1 [cond-mat.supr-con] (2021).
17.
D. R.
Harshman
and
A. T.
Fiory
, “
Compressed H3S: Inter-sublattice Coulomb coupling in a high-TC superconductor
,”
J. Phys.: Condens. Matter
29
,
445702
(
2017
).
18.
D. R.
Harshman
,
A. T.
Fiory
, and
J. D.
Dow
, “
Theory of high-TC superconductivity: Transition temperature
,”
J. Phys.: Condens. Matter
23
,
295701
(
2011
);
D. R.
Harshman
,
A. T.
Fiory
, and
J. D.
Dow
, “
Theory of high-TC superconductivity: transition temperature
,”
J. Phys.: Condens. Matter
23
,
349501
(
2011
).
19.
D. R.
Harshman
and
A. T.
Fiory
, “
High-TC superconductivity in hydrogen clathrates mediated by Coulomb interactions between hydrogen and central-atom electrons
,”
J. Supercond. Novel Magn.
33
,
2945
(
2020
).
20.
D. R.
Harshman
and
A. T.
Fiory
, “
High-TC superconductivity in Cs3C60 compounds governed by local Cs-C60 Coulomb interactions
,”
J. Phys.: Condens. Matter
29
,
145602
(
2017
).
21.
A. P.
Drozdov
,
M. I.
Eremets
,
I. A.
Troyan
,
V.
Ksenofontov
, and
S. I.
Shylin
, “
Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system
,”
Nature
525
,
73
(
2015
).
22.
M.
Du
,
Z.
Zhang
,
T.
Cui
, and
D.
Duan
, “Pressure-induced superconducting CS2H10 with an H3S framework,”
Phys. Chem. Chem. Phys.
23
,
22779
(
2021
).
23.
X.
Wang
,
T.
Bi
,
K. P.
Hilleke
,
A.
Lamichhane
,
R. J.
Hemley
, and
E.
Zurek
, arXiv:2109.09898v2 [cond-mat.supr-con] (2021).
24.
E. F.
Talantsev
, “
The electron-phonon coupling constant, Fermi temperature and unconventional superconductivity in the carbonaceous sulfur hydride 190 K superconductor
,”
Supercond. Sci. Technol.
34
,
034001
(
2021
).
25.
E. F.
Talantsev
, “
The dominance of non-electron-phonon charge carrier interaction in highly-compressed superhydrides
,”
Supercond. Sci. Technol.
34
,
115001
(
2021
).
26.
V. S.
Minkov
,
V. B.
Prakapenka
,
E.
Greenberg
, and
M. I.
Eremets
, “
A boosted critical temperature of 166 K in superconducting D3S synthesized from elemental sulfur and hydrogen
,”
Angew. Chem. Int. Ed.
59
,
18970
(
2020
).
27.
D. R.
Harshman
and
A. T.
Fiory
, “
On the isotope effect in compressed H3S and D3S
,”
Supercond. Sci. Technol.
30
,
045011
(
2017
).
28.
M.
Einaga
,
M.
Sakata
,
T.
Ishikawa
,
K.
Shimizu
,
M. I.
Eremets
,
A. P.
Drozdov
,
I. A.
Troyan
,
N.
Hirao
, and
Y.
Ohishi
, “
Crystal structure of the superconducting phase of sulfur hydride
,”
Nat. Phys.
12
,
835
(
2016
).
29.
I.
Errea
,
M.
Calandra
,
C. J.
Pickard
,
J. R.
Nelson
,
R. J.
Needs
,
Y.
Li
,
H.
Liu
,
Y.
Zhang
,
Y.
Ma
, and
F.
Mauri
, “
Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system
,”
Nature
532
,
81
(
2016
).
30.
A. F.
Goncharov
,
E.
Bykova
,
M.
Bykov
,
X.
Zhang
,
Y.
Wang
,
S.
Clariton
, and
V. B.
Prakapenka
, “Synthesis and structure of carbon doped H3S compounds at high pressure,” arXiv:2110.00038v1 [cond-mat.mtrl-sci] (2021).
31.
D. R.
Harshman
and
A. T.
Fiory
, “
The superconducting transition temperatures of Fe1+xSe1–y, Fe1+xSe1–yTey and (K/Rb/Cs)zFe2–xSe2
,”
J. Phys.: Condens. Matter
24
,
135701
(
2012
).
32.
D. R.
Harshman
and
A. T.
Fiory
, “
High-TC superconductivity originating from interlayer Coulomb coupling in gate-charged twisted bilayer graphene Moiré superlattices
,”
J. Supercond. Novel Magn.
33
,
367
(
2020
).
You do not currently have access to this content.