The physics of ionic electrospray propulsion spans multiple length scales. This paper combines a molecular dynamics model, a particle–particle model, and a particle-in-cell model to investigate the physics of ionic electrospray propulsion over 9 orders of magnitude in length scale. The combined models are applied to simulate beam emission for an ionic electrospray propulsion system with porous emitter tips and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid propellant from the emission site to the downstream plume. Additionally, the impact of multiple emission sites from a single emitter tip is analyzed with regard to extractor grid interception and overall beam neutralization for bipolar thruster pairs. Results show that beams consisting of species of different masses (i.e., monomer and dimer species) are affected by particle–particle forces during acceleration and should not be treated as a superposition of independently accelerated species in macro-scale plume models. The activation of multiple emission sites also causes a noticeable increase in the beam’s spread, leading to increased intercepted current but relatively little adverse effects in the downstream plume region.

1.
M.
Natisin
,
H.
Zamora
,
W.
McGhee
,
N.
Arnold
,
Z.
Holley
,
M.
Holmes
, and
D.
Eckhardt
, “
Fabrication and characterization of a fully conventionally machined high-performance porous media electrospray thruster
,”
J. Micromech. Microeng.
30
,
115021
(
2020
).
2.
C.
Chen
,
M.
Chen
, and
H.
Zhou
, “
Characterization of an ionic liquid electrospray thruster with a porous ceramic emitter
,”
Plasma Sci. Technol.
22
,
094009
(
2020
).
3.
E. M.
Petro
,
A. R.
Bruno
, and
P. C.
Lozano
, “
Characterization of the TILE electrospray emitters
,” in
AIAA Propulsion and Energy Forum
, August 24–28, 2020 (American Institute of Aeronautics and Astronautics, 2020).
4.
C.
Ma
and
C.
Ryan
, “
Plume characterization of a porous electrospray thruster
,” in
Proceedings of the 36th International Electric Propulsion Conference
, Vienna, Austria, Sept. 15–20, 2019 (Electric Rocket Society, 2019).
5.
T.
Fedkiw
,
Z.
Wood
,
N.
Demmons
, and
D.
Courtney
, “
Environmental and lifetime testing of the bet-300-p electrospray thruster
,” in
AIAA Propulsion and Energy 2020 Forum
, August 24–28, 2020 (American Institute of Aeronautics and Astronautics, 2020).
6.
G.
Taylor
, “
Disintegration of water drops in an electric field
,”
Proc. R. Soc. Lond. Ser. A
280
,
383
397
(
1964
).
7.
M.
Gamero-Castaño
and
J.
Fernández De La Mora
, “
Mechanisms of electrospray ionization of singly and multiply charged salt clusters
,”
Anal. Chim. Acta
406
,
67
91
(
2000
).
8.
D. G.
Courtney
,
H. Q.
Li
, and
P.
Lozano
, “
Emission measurements from planar arrays of porous ionic liquid ion sources
,”
J. Appl. Phys.
45
,
485203
(
2012
).
9.
D. G.
Courtney
and
H.
Shea
, “
Fragmentation in time-of-flight spectrometry-based calculations of ionic electrospray thruster performance
,”
J. Guid. Control Dyn.
38
,
1500
1504
(
2015
).
10.
C.
Coffman
,
L.
Perna
,
H.
Li
, and
P. C.
Lozano
, “On the manufacturing and emission characteristics of a novel borosilicate electrospray source,” in Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 14–17, 2013 (American Institute of Aeronautics and Astronautics, 2013), Vol. 1, Pt. F.
11.
R. S.
Legge
and
P. C.
Lozano
, “
Electrospray propulsion based on emitters microfabricated in porous metals
,”
J. Propul. Power
27
,
485
495
(
2011
).
12.
A.
Thuppul
,
P. L.
Wright
,
A. L.
Collins
,
J. K.
Ziemer
, and
R. E.
Wirz
, “
Lifetime considerations for electrospray thrusters
,”
Aerospace
7
,
108
(
2020
).
13.
A. G.
Hsu
,
B. B.
Brady
,
M. P.
Easton
,
A. C.
Labatete-goeppinger
,
T. J.
Curtiss
,
D.
Krejci
, and
P.
Lozano
, “Laboratory testing of a modular 8-thruster scalable ion electrospray propulsion system,” in Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, Sept. 15–20, 2019 (Electric Rocket Society, 2017).
14.
F.
Mier-Hicks
and
P. C.
Lozano
, “
Spacecraft-charging characteristics induced by the operation of electrospray thrusters
,”
J. Propul. Power
33
,
456
467
(
2017
).
15.
D.
Krejci
,
F.
Mier-Hicks
,
R.
Thomas
,
T.
Haag
, and
P.
Lozano
, “
Emission characteristics of passively fed electrospray microthrusters with propellant reservoirs
,”
J. Spacecr. Rockets
54
,
447
458
(
2017
).
16.
J. E.
Polk
,
J. R.
Brophy
,
J.
Wang
, and
S.
Diego
, “Spatial and temporal distribution of ion engine accelerator grid erosion,” in Proceedings of the 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, July 10–12, 1995 (American Institute of Aeronautics and Astronautics, 1995).
17.
J. R.
Brophy
,
I.
Katz
,
J. E.
Polk
, and
J. R.
Anderson
, “Numerical simulations of ion thruster accelerator grid erosion,” in Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, IN, July 7–10, 2002 (American Institute of Aeronautics and Astronautics, 2002).
18.
J. W.
Emhoff
and
I. D.
Boyd
, “Grid erosion modeling of the next ion thruster optics,” in Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, July 20–23, 2003 (American Institute of Aeronautics and Astronautics, 2003).
19.
R. E.
Wirz
,
J. R.
Anderson
,
D. M.
Goebel
, and
I.
Katz
, “
Decel grid effects on ion thruster grid erosion
,”
IEEE Trans. Plasma Sci.
36
,
2122
2129
(
2008
).
20.
M.
Nakano
, “
Three-dimensional simulations of grid erosion in ion engines
,”
Vacuum
83
,
82
85
(
2008
).
21.
C.
Guerra-Garcia
,
D.
Krejci
, and
P.
Lozano
, “
Spatial uniformity of the current emitted by an array of passively fed electrospray porous emitters
,”
J. Phys. D: Appl. Phys.
49
,
115503
(
2016
).
22.
R. E.
Wirz
,
A. L.
Collins
,
A.
Thuppul
,
P. L.
Wright
,
N. M.
Uchizono
,
H.
Huh
,
M. J.
Davis
,
J. K.
Ziemer
, and
N. R.
Demmons
, “
Electrospray thruster performance and lifetime investigation for the LISA mission
,” in
AIAA Propulsion and Energy Forum and Exposition
, Indianapolis, IN, August 19–22, 2019 (American Institute of Aeronautics and Astronautics, 2019).
23.
J.
Zhang
,
G.
Cai
,
X.
Liu
,
B.
He
, and
W.
Wang
, “
Molecular dynamics simulation of ionic liquid electrospray: Revealing the effects of interaction potential models
,”
Acta Astronaut.
179
,
581
593
(
2021
).
24.
A.
Borner
and
D. A.
Levin
, “
Coupled molecular dynamics—3D Poisson simulations of ionic liquid electrospray thrusters
,”
IEEE Trans. Plasma Sci.
43
,
295
304
(
2015
).
25.
N. A.
Mehta
and
D. A.
Levin
, “
Molecular dynamics electrospray simulations of coarse-grained ethylammonium nitrate (EAN) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4)
,”
Aerospace
5
,
1
18
(
2018
).
26.
N. A.
Mehta
and
D. A.
Levin
, “
Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models
,”
Phys. Rev. E
97
,
1
13
(
2018
).
27.
A.
Borner
,
Z.
Li
, and
D. A.
Levin
, “
Modeling of an ionic liquid electrospray using a molecular dynamics model
,”
AIP Conf. Proc.
1501
,
887
894
(
2012
).
28.
A.
Borner
,
Z.
Li
, and
D. A.
Levin
, “
Prediction of fundamental properties of ionic liquid electrospray thrusters using molecular dynamics
,”
J. Phys. Chem. B
117
,
6768
6781
(
2013
).
29.
T. M.
Coles
and
P. C.
Lozano
, “Investigating efficiency losses from solvated ion fragmentation in electrospray thruster beams,” in Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 14–17, 2013 (American Institute of Aeronautics and Astronautics, San Jose, CA, 2013), Vol. 1, Pt. F.
30.
J.
Rosell-Llompart
,
J.
Grifoll
, and
I. G.
Loscertales
, “
Electrosprays in the cone-jet mode: From Taylor cone formation to spray development
,”
J. Aerosol. Sci.
125
,
2
31
(
2018
).
31.
Y.
Zhao
and
J. J.
Wang
, “A particle-particle simulation model for droplet acceleration in colloid thrusters,” in Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, Sept. 15–20, 2019 (Electric Rocket Society, Vienna, 2019).
32.
K.
Emoto
,
T.
Tsuchiya
, and
Y.
Takao
, “
Numerical investigation of steady and transient ion beam extraction mechanisms for electrospray thrusters
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
16
,
110
115
(
2018
).
33.
R. I.
Samanta Roy
,
D. E.
Hastings
, and
N. A.
Gatsonis
, “
Ion-thruster plume modeling for backflow contamination
,”
J. Spacecr. Rockets
33
,
525
534
(
1996
).
34.
I. D.
Boyd
, “
Review of Hall thruster plume modeling
,”
J. Spacecr. Rockets
38
,
381
387
(
2001
).
35.
J.
Wang
and
D.
Brinza
, “
Three-dimensional particle simulations of ion propulsion plasma environment for Deep Space 1
,”
J. Spacecr. Rockets
38
,
433
440
(
2001
).
36.
J.
Wang
,
Y.
Cao
,
R.
Kafafy
,
J.
Pierru
, and
V.
Decyk
, “
Simulations of ion thruster-plume-spacecraft interactions on parallel supercomputer
,”
IEEE Trans. Plasma Sci.
34
,
2148
2158
(
2006
).
37.
R.
Kafafy
and
J.
Wang
, “
A hybrid grid immersed finite element particle-in-cell algorithm for modeling spacecraft—Plasma interactions
,”
IEEE Trans. Plasma Phys.
34
,
2114
2124
(
2006
).
38.
J.
Wang
and
Y.
Hu
, “
On the limitations of hybrid particle-in-cell for ion thruster plume simulations
,”
Phys. Plasmas
26
,
103502
(
2019
).
39.
M.
Tajmar
and
J.
Wang
, “
Three-dimensional numerical simulation of field-emission-electric-propulsion neutralization
,”
J. Propul. Power
16
,
536
544
(
2000
).
40.
M.
Tajmar
and
J.
Wang
, “
Three-dimensional numerical simulation of field-emission-electric-propulsion backflow contamination
,”
J. Spacecr. Rockets
38
,
69
78
(
2001
).
41.
J. F.
Roussel
,
T.
Tondu
,
J. C.
Matéo-Vélez
,
E.
Chesta
,
S.
D’Escrivan
, and
L.
Perraud
, “
Modeling of FEEP plume effects on MICROSCOPE spacecraft
,”
IEEE Trans. Plasma Sci.
36
,
2378
2386
(
2008
).
42.
A. J.
Lopez-Arreguin
and
E.
Stoll
, “
Addressing the effects of background plasma and wake formation on nanosatellites with electric propulsion using a 3D particle in cell code
,”
Results Phys.
14
,
102442
(
2019
).
43.
D. G.
Courtney
,
H.
Shea
,
K.
Dannenmayer
, and
A.
Bulit
, “
Charge neutralization and direct thrust measurements from bipolar pairs of ionic electrospray thrusters
,”
J. Spacecr. Rockets
55
,
54
65
(
2018
).
44.
C.
Cui
and
J.
Wang
, “
Simulations of pure ionic electrospray thruster plume neutralization
,” in
AIAA Propulsion and Energy 2020 Forum
, August 24–28, 2020 (American Institute of Aeronautics and Astronautics, 2020).
45.
J. S.
Asher
and
J.
Wang
, “
On the impact of ion fragmentation on bipolar ionic electrospray thruster pair operations: 3D PIC simulations
,” in
AIAA Propulsion and Energy Forum
, August 9–11, 2021 (American Institute of Aeronautics and Astronautics, 2021).
46.
J. S.
Asher
and
J.
Wang
, “
3-dimensional particle-in-cell simulations of bipolar ionic electrospray thruster plume
,”
J. Propul. Power
(to be published,
2021
).
47.
R. J.
Antypas
and
J. J.
Wang
, “Pure ionic electrospray extractor design optimization,” in Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, Sept. 15–20, 2019 (Electric Rocket Society, Vienna, 2019).
48.
R.
Kafafy
,
T.
Lin
,
Y.
Lin
, and
J.
Wang
, “
Three-dimensional immersed finite element methods for electric field simulation in composite materials
,”
Int. J. Numer. Methods Eng.
64
,
940
972
(
2005
).
49.
D.
Han
,
P.
Wang
,
X.
He
,
T.
Lin
, and
J.
Wang
, “
A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions
,”
J. Comput. Phys.
321
,
965
980
(
2016
).
50.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindah
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
51.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comp. Phys. Comm.
271
,
108171
(
2022
).
52.
F.
Zhang
,
X.
Jiang
,
G.
Chen
,
Y.
He
,
G.
Hu
, and
R.
Qiao
, “
Electric-field-driven ion emission from the free surface of room temperature ionic liquids
,”
J. Phys. Chem. Lett.
12
,
711
716
(
2021
).
53.
N.
Takahashi
, “Molecular dynamics modeling of ionic liquids in electrospray propulsion,” Technical Report (Massachusetts Institute of Technology, Cambridge, 2010).
54.
Y.
Zhao
,
J.
Wang
, and
H.
Usui
, “
Simulations of ion thruster beam neutralization using a particle-particle model
,”
J. Propul. Power
34
,
1109
1115
(
2018
).
55.
J.
Wang
,
D.
Han
, and
Y.
Hu
, “
Kinetic simulations of plasma plume potential in a vacuum chamber
,”
IEEE Trans. Plasma Sci.
43
,
3047
3053
(
2015
).
56.
J.
Wang
,
P.
Wang
,
M.
Belhaj
, and
J. C.
Mateo Velez
, “
Modeling facility effects on secondary electron emission experiment
,”
IEEE Trans. Plasma Sci.
40
,
2773
2780
(
2012
).
57.
C. E.
Miller
and
P. C.
Lozano
, “
Measurement of the fragmentation rates of solvated ions in ion electrospray thrusters
,” in
Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference
, Salt Lake City, UT, July 25–27, 2016 (American Institute of Aeronautics and Astronautics, 2016).
58.
C. E.
Miller
, “Characterization of ion cluster fragmentation in ionic liquid ion sources,” Ph.D. thesis (Massachusetts Institute of Technology, 2019).
You do not currently have access to this content.