Ytterbium-based heavy-fermion metals have recently attracted attention as magnetic refrigeration materials generating low-temperature environments below 1 K without using expensive 3He. YbCu4Ni is known to exhibit a giant value of specific heat divided by temperature C/T7.5J/K2mol below 0.2 K, implying high potential of magnetic refrigeration. In this paper, we report magnetic refrigeration down to 0.2 K from the initial temperatures of 1.8 K by YbCu4Ni ingots installed in a commercial 4He refrigerator. The performance is consistent with that evaluated by our DC magnetization and specific heat measurements. Our study demonstrates the high performance of YbCu4Ni without precious metals as a magnetic refrigeration material with moderately high density of Yb atoms (0.02Ybmol/cm3) and high thermal conductivity.

1.
F.
Pobell
,
Matter and Methods at Low Temperatures
(
Springer-Verlag
,
Berlin
,
1992
).
2.
P. J.
Shirron
,
E.
Canavan
,
M.
DiPirro
,
J.
Francis
,
M.
Jackson
,
J.
Tuttle
,
T.
King
, and
M.
Grabowski
, “
Development of a cryogen-free continuous ADR for the constellation-X mission
,”
Cryogenics
44
,
581
(
2004
).
3.
P. J.
Shirron
, “
Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators
,”
Cryogenics
62
,
130
(
2014
).
4.
J.
Duval
,
A.
Attard
, and
D.
Brasiliano
, “
Experimental results of ADR cooling tuned for operation at 50 mK or higher temperature
,”
IOP Conf. Ser.: Mater. Sci. Eng.
755
,
012122
(
2020
).
5.
J.
Tuttle
,
E.
Canavan
,
H.
DeLee
,
M.
DiPirro
,
A.
Jahromi
,
B.
James
,
M.
Kimball
,
P.
Shirron
,
D.
Sullivan
, and
E.
Switzer
, “
Development of a space-flight ADR providing continuous cooling at 50 mK with heat rejection at 10 K
,”
IOP Conf. Ser.: Mater. Sci. Eng.
278
,
012009
(
2017
).
6.
O. E.
Vilches
and
J. C.
Wheatley
, “
Measurements of the specific heats of three magnetic salts at low temperatures
,”
Phys. Rev.
148
,
509
(
1966
).
7.
E. W.
Hornung
,
R. A.
Fisher
,
G. E.
Brodale
, and
W. F.
Giauque
, “
Magnetothermodynamics of gadolinium gallium garnet II heat capacity, entropy, magnetic moment from 0.5 to 4.2 K, with fields to 90 kG, along the [111] axis
,”
J. Chem. Phys.
61
,
282
(
1974
).
8.
A.
Tomokiyo
,
H.
Yayama
,
T.
Hashimoto
,
T.
Aomine
,
M.
Nishida
, and
S.
Sakaguchi
, “
Specific heat and entropy of dysprosium gallium garnet in magnetic fields
,”
Cryogenics
25
,
271
(
1985
).
9.
T.
Numazawa
,
K.
Kamiya
,
T.
Okano
, and
K.
Matsumoto
, “
Magneto caloric effect in (DyxGd1x)3Ga5O12 for adiabatic demagnetization refrigeration
,”
Phys. B: Condens. Matter
329
,
1656
(
2003
).
10.
A. C. S.
Hamilton
,
G. I.
Lampronti
,
S. E.
Rowley
, and
S. E.
Dutton
, “
Enhancement of the magnetocaloric effect driven by changes in the crystal structure of Al-doped GGG, Gd3Ga5xAlxO12(0x5)
,”
J. Phys.: Condens. Matter
26
,
116001
(
2014
).
11.
J.
Filippi
,
J. C.
Lasjaunias
,
B.
Hebral
,
J.
Rossat-Mignod
, and
F.
Tcheou
, “
Magnetic properties of ytterbium gallium garnet between 44 mK and 4 K
,”
J. Phys. C: Solid State Phys.
13
,
1277
(
1980
).
12.
D. A.
Paixao Brasiliano
,
J.-M.
Duval
,
C.
Marin
,
E.
Bichaud
,
J.-P.
Brison
,
M.
Zhitomirsky
, and
N.
Luchier
, “
YbGG material for adiabatic demagnetization in the 100 mK–3 K range
,”
Cryogenics
105
,
103002
(
2020
).
13.
Y.
Tokiwa
,
S.
Bachus
,
K.
Kavita
,
A.
Jesche
,
A. A.
Tsirlin
, and
P.
Gegenwart
, “
Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures
,”
Commun. Mater.
2
,
42
(
2021
).
14.
D.
Jang
,
T.
Gruner
,
A.
Steppke
,
K.
Mitsumoto
,
C.
Geibel
, and
M.
Brando
, “
Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn
,”
Nat. Commun.
6
,
8680
(
2015
).
15.
J. G.
Sereni
, “
Thermomagnetic properties of very heavy fermions suitable for adiabatic demagnetisation refrigeration at low temperature
,”
Philos. Mag.
100
,
1211
(
2020
).
16.
M.
Rotter
,
M.
Loewenhaupt
,
M.
Doerr
,
A.
Lindbaum
,
H.
Sassik
,
K.
Ziebeck
, and
B.
Beuneu
, “
Dipole interaction and magnetic anisotropy in gadolinium compounds
,”
Phys. Rev. B
68
,
144418
(
2003
).
17.
M.
Vojta
, “
Frustration and quantum criticality
,”
Rep. Prog. Phys.
81
,
064501
(
2018
).
18.
T.
Gruner
,
D.
Jang
,
A.
Steppke
,
M.
Brando
,
F.
Ritter
,
C.
Krellner
, and
C.
Geibel
, “
Unusual weak magnetic exchange in two different structure types: YbPt2Sn and YbPt2In
,”
J. Phys.: Condens. Matter
26
,
485002
(
2014
).
19.
Y.
Tokiwa
,
B.
Piening
,
H. S.
Jeevan
,
S. L.
Bud’ko
,
P. C.
Canfield
, and
P.
Gegenwart
, “
Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling
,”
Sci. Adv.
2
,
e1600835
(
2016
).
20.
M. S.
Torikachvili
,
S.
Jia
,
E. D.
Mun
,
S. T.
Hannahs
,
R. C.
Black
,
W. K.
Neils
,
D.
Martien
,
S. L.
Bud’ko
, and
P. C.
Canfield
, “
Six closely related YbT2Zn20 (T=Fe, Co, Ru, Rh, Os, Ir) heavy fermion compounds with large local moment degeneracy
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
9960
(
2007
).
21.
Y.
Shimura
,
T.
Kitazawa
,
S.
Tsuda
,
S.
Bachus
,
Y.
Tokiwa
,
P.
Gegenwart
,
R.
Yamamoto
,
Y.
Yamane
,
I.
Nishihara
,
K.
Umeo
,
T.
Onimaru
,
T.
Takabatake
,
H. T.
Hirose
,
N.
Kikugawa
,
T.
Terashima
, and
S.
Uji
, “
Fragile superheavy Fermi liquid in YbCo2Zn20
,”
Phys. Rev. B
101
,
241102
(
2020
).
22.
J. G.
Sereni
,
I.
Čurlík
,
M.
Giovannini
,
A.
Strydom
, and
M.
Reiffers
, “
Physical properties of the magnetically frustrated very-heavy-fermion compound YbCu4Ni
,”
Phys. Rev. B
98
,
094420
(
2018
).
23.
I.
Čurlík
,
M.
Reiffers
,
M.
Giovannini
,
A.
Gazo
,
J.
Sebek
, and
E.
Santava
, “
Strong electronic correlations in a new Yb-based compound: YbCu4Ni
,”
Acta Phys. Pol. A
118
,
919
(
2010
).
24.
I.
Čurlík
,
M.
Reiffers
, and
M.
Giovannini
, “
Study of magnetic contribution to the heat capacity of YbCu4Ni
,”
Acta Phys. Pol. A
122
,
3
(
2012
).
25.
I.
Čurlík
,
S.
Matosova
,
S.
Ilkovic
,
M.
Reiffers
, and
M.
Giovannini
, “
Transport and magnetic properties of YbCu4Ni
,”
Acta Phys. Pol. A
122
,
6
(
2012
).
26.
K.
Lea
,
M.
Leask
, and
W.
Wolf
, “
The raising of angular momentum degeneracy of f-electron terms by cubic crystal fields
,”
J. Phys. Chem. Solids
23
,
1381
(
1962
).
27.
D.
Aoki
and
J.
Flouquet
, “
Superconductivity and ferromagnetic quantum criticality in uranium compounds
,”
J. Phys. Soc. Jpn.
83
,
061011
(
2014
).
28.
T.
Sakakibara
,
H.
Mitamura
,
T.
Tayama
, and
H.
Amitsuka
, “
Faraday force magnetometer for high-sensitivity magnetization measurements at very low temperatures and high fields
,”
Jpn. J. Appl. Phys.
33
,
5067
(
1994
).
29.
V.
Franco
,
J.
Blázquez
,
J.
Ipus
,
J.
Law
,
L.
Moreno-Ramírez
, and
A.
Conde
, “
Magnetocaloric effect: From materials research to refrigeration devices
,”
Prog. Mater. Sci.
93
,
112
(
2018
).
30.
V.
Franco
,
J.
Blázquez
,
B.
Ingale
, and
A.
Conde
, “
The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models
,”
Annu. Rev. Mater. Sci.
42
,
305
(
2012
).
31.
K.
Momma
and
F.
Izumi
, “
VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
(
2011
).

Supplementary Material

You do not currently have access to this content.