Low-frequency (5–30 kHz) discharge current oscillations characterize the operation of Hall thrusters and represent a valuable metric not only to monitor the thruster behavior, but also to optimize the thruster performance. Two types of low-frequency oscillation modes are commonly observed: a global “breathing” mode, associated with the propellant ionization, and a local mode, typically characterized by a lower oscillation amplitude and the appearance of azimuthal spokes. The main characteristics of discharge oscillations and the transition between the two oscillation modes vary greatly with the thruster geometry and the operating condition. In this work, we present the results of an experimental campaign carried out on a 20 kW-class thruster prototype, SITAEL’s HT20k, with an exchangeable discharge channel and a magnetic circuit. Three different channel sizes were tested over a wide range of operating conditions and magnetic fields. For each operating point, a high frequency measurement of the discharge current was performed, recording the main characteristics of the oscillations. The data collected were then processed to derive the influence coefficients of each thruster parameter on the discharge current characteristics, as well as their dispersion. Finally, this allowed us to formulate general, data-driven scaling laws for the discharge current salient features, such as oscillation amplitude and dominant frequency. The gathered insight sheds light on the physical processes involved in the thruster discharge. At the same time, the possibility to model with simple functional laws the main oscillatory mode of Hall thrusters offers a unique aid to the optimization of thruster design and the evaluation of thruster performance during life.

1.
J.-P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
2.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
Wiley
,
Hoboken, NJ
,
2008
).
3.
E. Y.
Choueiri
, “
Plasma oscillations in Hall thrusters
,”
Phys. Plasmas
8
,
1411
(
2001
).
4.
M. J.
Sekerak
,
B.
Longmier
,
A.
Gallimore
,
W.
Huang
,
H.
Kamhawi
,
R. R.
Hofer
,
B.
Jorns
, and
J. E.
Polk
, “Mode transitions in magnetically shielded Hall effect thrusters,” in Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (AIAA, 2014).
5.
M. J.
Sekerak
,
A. D.
Gallimore
,
D. L.
Brown
,
R. R.
Hofer
, and
J. E.
Polk
, “
Mode transitions in Hall-effect thrusters induced by variable magnetic field strength
,”
J. Propul. Power
32
,
903
917
(
2016
).
6.
G. N.
Tilinin
, “
High-frequency plasma waves in a Hall accelerator with an extended acceleration zone
,”
Sov. Phys. Tech. Phys.
22
,
974
(
1977
).
7.
T.
Tamida
,
T.
Nakagawa
,
I.
Suga
,
H.
Osuga
,
T.
Ozaki
, and
K.
Matsui
, “
Determining parameter sets for low-frequency-oscillation-free operation of Hall thruster
,”
J. Appl. Phys.
102
,
043304
(
2007
).
8.
V.
Giannetti
,
M. M.
Saravia
, and
T.
Andreussi
, “
Measurement of the breathing mode oscillations in Hall thruster plasmas with a fast-diving triple Langmuir probe
,”
Phys. Plasmas
27
,
123502
(
2020
).
9.
R.
Lobbia
and
A.
Gallimore
, “A method of measuring transient plume properties,” in
Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
(
AIAA
,
2008
).
10.
R. B.
Lobbia
and
A. D.
Gallimore
, “
Fusing spatially and temporally separated single-point turbulent plasma flow measurements into two-dimensional time-resolved visualizations
,” in
Proceedings of the 12th International Conference on Information Fusion
(IEEE, 2009), pp.
678
685
.
11.
R. B.
Lobbia
and
A. D.
Gallimore
, “
Two-dimensional time-resolved breathing mode plasma fluctuation variation with Hall thruster discharge settings
,” in
Proceedings of the 31st International Electric Propulsion Conference
(Electric Rocket Propulsion Society, 2009), IEPC-2009-106.
12.
R. B.
Lobbia
and
A. D.
Gallimore
, “
High-speed dual Langmuir probe
,”
Rev. Sci. Instrum.
81
,
073503
(
2010
).
13.
B.
Vincent
,
S.
Tsikata
,
S.
Mazouffre
,
T.
Minea
, and
J.
Fils
, “
A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies
,”
Plasma Sources Sci. Technol.
27
,
055002
(
2018
).
14.
S.
Mazouffre
, “
Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters
,”
Plasma Sources Sci. Technol.
22
,
013001
(
2013
).
15.
E. T.
Dale
and
B. A.
Jorns
, “Two-zone Hall thruster breathing mode mechanism, part II: Experiment,” in Proceedings of the 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2019), IEPC-2019-352.
16.
E. T.
Dale
and
B. A.
Jorns
, “
Non-invasive time-resolved measurements of anomalous collision frequency in a Hall thruster
,”
Phys. Plasmas
26
,
013516
(
2019
).
17.
V. H.
Chaplin
,
R. B.
Lobbia
,
A.
Lopez Ortega
,
I. G.
Mikellides
,
R. R.
Hofer
,
J. E.
Polk
, and
A. J.
Friss
, “
Time-resolved ion velocity measurements in a high-power Hall thruster using laser-induced fluorescence with transfer function averaging
,”
Appl. Phys. Lett.
116
,
234107
(
2020
).
18.
J. M.
Fife
,
M.
Martinez-Sanchez
, and
J.
Szabo
, “A numerical study of low-frequency discharge oscillations in Hall thrusters,” in
Proceedings of the 33rd Joint Propulsion Conference and Exhibit
(
American Institute of Aeronautics and Astronautics, Inc.
,
1997
).
19.
J. P.
Boeuf
and
L.
Garrigues
, “
Low frequency oscillations in a stationary plasma thruster
,”
J. Appl. Phys.
84
,
3541
3554
(
1998
).
20.
S.
Barral
and
E.
Ahedo
, “Theoretical study of the breathing mode in Hall thrusters,” in
Collection of Technical Papers—AIAA/ASME/SAE/ASEE 42nd Joint Propulsion Conference
(
AIAA
,
2006
).
21.
E. T.
Dale
and
B. A.
Jorns
, “
Two-zone Hall thruster breathing mode mechanism, Part I: Theory
,” in
36th International Electric Propulsion Conference
(Electric Rocket Propulsion Society, 2019), IEPC-2019-354.
22.
V.
Giannetti
,
M. M.
Saravia
,
L.
Leporini
,
S.
Camarri
, and
T.
Andreussi
, “
Numerical and experimental investigation of longitudinal oscillations in Hall thrusters
,”
Aerospace
8
,
148
(
2021
).
23.
K.
Hara
,
I. D.
Boyd
,
M. J.
Sekerak
, and
A. D.
Gallimore
, “Breathing mode in Hall effect thrusters,” in 30th ISTS, 34th IEPC and 6th NSAT (Electric Rocket Propulsion Society, 2015), IEPC-2015-293/ISTS-2015-b-283.
24.
O.
Chapurin
,
A.
Smolyakov
,
G.
Hagelaar
,
J. P.
Boeuf
, and
Y.
Raitses
, “Fluid and hybrid simulations of the ionization instabilities in Hall thruster,” in Proceedings of the 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2019), IEPC-2019-762.
25.
K.
Hara
,
M. J.
Sekerak
,
I. D.
Boyd
, and
A. D.
Gallimore
, “
Perturbation analysis of ionization oscillations in Hall effect thrusters
,”
Phys. Plasmas
21
,
122103
(
2014
).
26.
K.
Hara
,
M. J.
Sekerak
,
I. D.
Boyd
, and
A. D.
Gallimore
, “
Mode transition of a Hall thruster discharge plasma
,”
J. Appl. Phys.
115
,
203304
(
2014
).
27.
A.
Smolyakov
,
I.
Romadanov
,
O.
Chapurin
,
Y.
Raitses
,
G.
Hagelaar
, and
J. P.
Boeuf
, “Stationary profiles and axial mode oscillations in Hall thrusters,” in AIAA Propulsion and Energy Forum and Exposition 2019 (American Institute of Aeronautics and Astronautics, 2019), pp. 1–15.
28.
A.
Piragino
,
A.
Leporini
,
V.
Giannetti
,
D.
Pedrini
,
A.
Rossodivita
,
T.
Andreussi
, and
M.
Andrenucci
, “Characterization of a 20 kW class Hall effect thruster,” in Proceedings of the 35th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2017), IEPC-2017-381.
29.
T.
Andreussi
,
A.
Piragino
,
M.
Reza
,
V.
Giannetti
,
F.
Faraji
,
E.
Ferrato
,
D.
Pedrini
,
A.
Kitaeva
,
A.
Rossodivita
,
C.
Paissoni
,
G.
Becatti
, and
M.
Andrenucci
, “Development status and way forward of SITAEL’s 20 kW class Hall thruster, the HT20k,” in Proceedings of the 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2019), IEPC-2019-825.
30.
A.
Morozov
and
V.
Savelyev
, “
Fundamentals of stationary plasma thruster theory
,”
Rev. Plasma Phys.
21
,
203
391
(
2000
).
31.
I.
Mikellides
,
I.
Katz
,
R.
Hofer
,
D.
Goebel
,
K.
De Grys
, and
A.
Mathers
, “
Magnetic shielding of the channel walls in a Hall plasma accelerator
,”
Phys. Plasmas
18
,
033501
(
2011
).
32.
I.
Mikellides
,
K.
Ira
, and
R.
Hofer
, “Design of a laboratory Hall thruster with magnetically shielded channel walls, phase I: Numerical simulations,” in Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (AIAA, 2011), AIAA-2011-5809.
33.
R. R.
Hofer
,
D. M.
Goebel
,
I. G.
Mikellides
, and
I.
Katz
, “
Magnetic shielding of a laboratory Hall thruster. II. Experiments
,”
J. Appl. Phys.
115
,
043304
(
2014
).
34.
H.
Kamahawi
,
H.
Wensheng
,
T.
Haag
,
R.
Shastry
,
G.
Soulas
,
T.
Smith
,
I.
Mikellides
, and
R.
Hofer
, “Performance and thermal characterization of the NASA 300 MS 20 kW Hall effect thruster,” in Proceedings of the 33rd International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2013), IEPC-2013-444.
35.
R.
Hofer
,
J.
Polk
,
I.
Mikellides
,
A.
Ortega
,
R.
Conversano
,
V.
Chaplin
,
R.
Lobbia
,
D.
Goebel
,
H.
Kamhawi
,
T.
Verchey
,
G.
Williams
,
J.
Mackey
,
H.
Wensheng
,
J.
Yim
,
D.
Herman
, and
P.
Peterson
, “Development status of the 12.5 kW Hall effect rocket with magnetic shielding (HERMeS),” in Proceedings of the 35th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2017), IEPC-2017-231.
36.
T.
Andreussi
,
V.
Giannetti
,
A.
Leporini
,
M. M.
Saravia
, and
M.
Andrenucci
, “
Influence of the magnetic field configuration on the plasma flow in Hall thrusters
,”
Plasma Phys. Control. Fusion
60
,
014015
(
2018
).
37.
T.
Andreussi
,
M.
Saravia
, and
M.
Andrenucci
, “
Plasma characterization in Hall thrusters by Langmuir probes
,”
J. Instrum.
14
,
C05011
(
2019
).
38.
V.
Giannetti
,
E.
Ferrato
,
A.
Piragino
,
M.
Reza
,
F.
Faraji
,
M.
Andrenucci
, and
T.
Andreussi
, “HT5k thruster unit development history, status and way forward,” in Proceedings of the 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2019), IEPC-2019-878.
39.
D.
Pedrini
,
F.
Torrini
,
J.
Grassi
,
F.
Paganucci
,
T.
Andreussi
,
T.
Misuri
, and
M.
Andrenucci
, “Development of hollow cathodes for 5 to 20 kW Hall thrusters,” in Proceedings of the 35th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2017), IEPC-2017-364.
40.
D.
Pedrini
,
T.
Misuri
,
F.
Paganucci
, and
M.
Andrenucci
, “
Development of hollow cathodes for space electric propulsion at Sitael
,”
Aerospace
4
,
26
(
2017
).
41.
A.
Piragino
,
E.
Ferrato
,
F.
Faraji
,
M.
Reza
,
V.
Giannetti
,
A.
Kitaeva
,
D.
Pedrini
,
M.
Andrenucci
, and
T.
Andreussi
, “SITAEL’s magnetically shielded 20 kW Hall thruster tests,” in Proceedings of the 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2019), IEPC-2019-879.
42.
A.
Piragino
,
F.
Faraji
,
M.
Reza
,
E.
Ferrato
,
A.
Piraino
, and
T.
Andreussi
, “
Background pressure effects on the performance of a 20 kW magnetically shielded Hall thruster operating in various configurations
,”
Aerospace
8
,
69
(
2021
).
43.
M.
Saverdi
,
M.
Signori
,
L.
Milaneschi
,
U.
Cesari
, and
L.
Biagioni
, “The IV10 space simulator for high power electric propulsion testing: Performance improvements and operation status,” in Proceedings of the 30th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2007), IEPC-2007-321.
44.
E.
Polk James
,
T.
Haag
,
S.
King
,
M.
Walker
,
J.
Blakely
, and
J.
Ziemer
, “
Recommended practice for thrust measurement in electric propulsion testing
,”
J. Propul. Power
33
,
539
555
(
2017
).
45.
M.
Andrenucci
,
F.
Battista
, and
P.
Piliero
, “Hall thruster scaling methodology,” in 29th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2005), pp. 1–17.
46.
T.
Misuri
,
F.
Battista
,
C.
Barbieri
,
E. A.
De Marco
, and
M.
Andrenucci
, “High power Hall thrusters design options,” in 30th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2007), IEPC-2007-311.
You do not currently have access to this content.