Cold atmospheric plasmas have great application potential due to their production of diverse types of reactive species, so understanding the production mechanism and then improving the production efficiency of the key reactive species are very important. However, plasma chemistry typically comprises a complex network of chemical species and reactions, which greatly hinders identification of the main production/reduction reactions of the reactive species. Previous studies have identified the main reactions of some plasmas via human experience, but since plasma chemistry is sensitive to discharge conditions, which are much different for different plasmas, widespread application of the experience-dependent method is difficult. In this paper, a method based on graph theory, namely, vital nodes identification, is used for the simplification of plasma chemistry in two ways: (1) holistically identifying the main reactions for all the key reactive species and (2) extracting the main reactions relevant to one key reactive species of interest. This simplification is applied to He + air plasma as a representative, chemically complex plasma, which contains 59 species and 866 chemical reactions, as reported previously. Simplified global models are then developed with the key reactive species and main reactions, and the simulation results are compared with those of the full global model, in which all species and reactions are incorporated. It was found that this simplification reduces the number of reactions by a factor of 8–20 while providing simulation results of the simplified global models, i.e., densities of the key reactive species, which are within a factor of two of the full global model. This finding suggests that the vital nodes identification method can capture the main chemical profile from a chemically complex plasma while greatly reducing the computational load for simulation.

1.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
Van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
2.
S. C.
Min
,
S. H.
Roh
,
B. A.
Niemira
,
J. E.
Sites
,
G.
Boyd
, and
A.
Lacombe
,
Int. J. Food Microbiol.
237
,
114
120
(
2016
).
3.
S.
Sasaki
,
M.
Kanzaki
, and
T.
Kaneko
,
Appl. Phys. Express
7
,
026202
(
2014
).
4.
H.
Furusho
,
K.
Kitano
,
S.
Hamaguchi
, and
Y.
Nagasaki
,
Chem. Mater.
21
,
3526
3535
(
2009
).
5.
S.
Ikawa
,
K.
Kitano
, and
S.
Hamaguchi
,
Plasma Process. Polym.
7
,
33
42
(
2010
).
6.
D.
O’connell
,
L. J.
Cox
,
W. B.
Hyland
,
S. J.
Mcmahon
,
S.
Reuter
,
W. G.
Graham
,
T.
Gans
, and
F. J.
Currell
,
Appl. Phys. Lett.
98
,
043701
(
2011
).
7.
D. B.
Graves
,
J. Phys. D: Appl. Phys.
45
,
263001
(
2012
).
8.
J. L.
Raimbault
and
P.
Chabert
,
Plasma Sources Sci. Technol.
18
,
014017
(
2008
).
9.
W.
van Gaens
and
A.
Bogaerts
,
J. Phys. D: Appl. Phys.
46
,
275201
(
2013
).
10.
D. X.
Liu
,
P.
Bruggeman
,
F.
Iza
,
M. Z.
Rong
, and
M. G.
Kong
,
Plasma Sources Sci. Technol.
19
,
025018
(
2010
).
11.
B.
Sun
,
D.
Liu
,
F.
Iza
,
S.
Wang
,
A.
Yang
,
Z. J.
Liu
,
M. Z.
Rong
, and
X. H.
Wang
,
Plasma Sources Sci. Technol.
28
,
035006
(
2019
).
12.
D. X.
Liu
,
M. Z.
Rong
,
X. H.
Wang
,
F.
Iza
,
M. G.
Kong
, and
P.
Bruggeman
,
Plasma Process. Polym.
7
,
846
865
(
2010
).
13.
W.
van Gaens
and
A.
Bogaerts
,
J. Phys. D: Appl. Phys.
47
,
079502
(
2014
).
14.
H.
Rabitz
,
M.
Kramer
, and
D.
Dacol
,
Annu. Rev. Phys. Chem.
34
,
419
(
1983
).
15.
A. S.
Tomlin
,
M. J.
Pilling
,
T.
Turányi
,
J. H.
Merkin
, and
J.
Brindley
,
Combust. Flame
91
,
107
(
1992
).
16.
D. M.
Hamby
,
Environ. Monit. Assess.
32
,
135
(
1994
).
17.
A.
Saltelli
,
M.
Ratto
,
S.
Tarantola
, and
F.
Campolongo
,
Chem. Rev.
105
,
2811
2828
(
2005
).
18.
J.
Zádor
,
I. G.
Zsély
,
T.
Turányi
,
M.
Ratto
,
S.
Tarantola
, and
A.
Saltelli
,
J. Phys. Chem. A
109
,
9795
9807
(
2005
).
19.
A.
Saltelli
,
M.
Ratto
,
S.
Tarantola
, and
F.
Campolongo
,
Chem. Rev.
112
,
PR1
(
2012
).
20.
A.
Saltelli
,
S.
Tarantola
,
F.
Campolongo
 et al,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
(
Wiley
,
New York
,
2004
).
21.
M. M.
Turner
,
Plasma Sources Sci. Technol.
25
,
015003
(
2016
).
22.
M. M.
Turner
,
Plasma Sources Sci. Technol.
24
,
035027
(
2015
).
23.
R.
Lehmann
,
J. Atmos. Chem.
47
,
45
(
2004
).
24.
A. H.
Markosyan
,
A.
Luque
,
F. J.
Gordillo-Vázquez
, and
U.
Ebert
,
Comput. Phys. Commun.
185
,
2697
(
2014
).
25.
K.
Ding
and
M. A.
Lieberman
,
J. Phys. D: Appl. Phys.
48
,
035401
(
2015
).
26.
S.
Schröter
 et al,
Phys. Chem. Chem. Phys.
20
,
24263
24286
(
2018
).
27.
T. F.
Lu
and
C. K.
Law
,
Proc. Combust. Inst.
30
,
1333
(
2009
).
28.
T. F.
Lu
and
C. K.
Law
,
Combust. Flame
146
,
472
.
29.
T.
Murakami
and
O.
Sakai
,
Plasma Sources Sci. Technol.
29
,
115018
(
2020
).
30.
J.
Li
,
C.
Fang
,
J.
Chen
 et al,
J. Appl. Phys.
129
,
133302
(
2021
).
31.
L.
,
D.
Chen
,
X. L.
Ren
,
Q. M.
Zhang
,
Y. C.
Zhang
, and
T.
Zhou
,
Phys. Rep.
650
,
1
63
(
2016
).
32.
P. S.
Romualdo
and
V.
Alessandro
,
Phys. Rev. E
65
,
036104
(
2002
).
33.
A. E.
Motter
,
Phys. Rev. Lett.
93
,
98701
(
2004
).
34.
C.
Liu
,
Y.
Ma
,
J.
Zhao
,
R.
Nussinov
,
Y. C.
Zhang
,
F.
Cheng
, and
Z.
Zhang
,
Phys. Rep.
846
,
1
66
(
2020
).
35.
P.
Csermely
,
T.
Korcsmáros
,
H. J.
Kiss
,
G.
London
, and
R.
Nussinov
,
Pharmacol. Ther.
138
,
333
408
(
2013
).
36.
F.
Cheng
,
C.
Liu
,
J.
Jiang
,
W.
Lu
,
W.
Li
,
G.
Liu
,
W. X.
Zhou
,
J.
Huang
, and
Y.
Tang
,
PLoS Comput. Biol.
8
,
e1002503
(
2012
).
37.
Y.
Mizui
,
T.
Kojima
,
S.
Miyagi
, and
O.
Sakai
,
Symmetry
9
,
309
(
2017
).
38.
R.
Andreozzi
,
V.
Caprio
,
A.
Insola
, and
R.
Marotta
,
Catal. Today
53
,
51
59
(
1999
).
39.
S.
Parsons
,
Advanced Oxidation Processes for Water and Wastewater Treatment
(
IWA Publishing
,
2004
).
40.
M. M.
Huber
,
S.
Canonica
,
G. Y.
Park
, and
U.
von Gunten
,
Environ. Sci. Technol.
37
,
1016
1024
(
2003
).
41.
D. X.
Liu
,
M. Z.
Rong
,
X. H.
Wang
,
F.
Iza
,
M. G.
Kong
, and
P.
Bruggeman
,
Plasma Process. Polym.
7
,
846
865
(
2010
).
42.
D. X.
Liu
,
F.
Iza
,
X. H.
Wang
,
Z. Z.
Ma
,
M. Z.
Rong
, and
M. G.
Kong
,
Plasma Sources Sci. Technol.
22
,
055016
(
2013
).
43.
L. C.
Freeman
,
Sociometry
40
,
35
41
(
1977
).
44.
S. P.
Borgatti
,
Soc. Networks
27
,
55
71
(
2005
).
45.
H.
Jeong
,
S. P.
Mason
,
A. L.
Barabási
, and
Z. N.
Oltvai
,
Nature
411
,
41
42
(
2001
).
46.
D.
Chen
,
L.
,
M. S.
Shang
,
Y. C.
Zhang
, and
T.
Zhou
,
Physica A
391
,
1777
1787
(
2012
).
47.
D. B.
Chen
,
H.
Gao
,
L.
, and
T.
Zhou
,
PLoS ONE
8
,
e77455
(
2013
).
48.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
,
Nat. Phys.
6
,
888
893
(
2010
).
49.
P.
Hage
and
F.
Harary
,
Soc. Networks
17
,
57
63
(
1995
).
50.
L. C.
Freeman
,
Soc. Networks
1
,
215
239
(
1979
).
51.
P.
Bonacich
,
J. Math. Sociol.
2
,
113
120
(
1972
).
52.
S.
Brin
and
L.
Page
,
Comput. Networks ISDN Syst.
30
,
107
117
(
1998
).
53.
Q.
Ou
,
Y. D.
Jin
,
T.
Zhou
,
B. H.
Wang
, and
B. Q.
Yin
,
Phys. Rev. E
75
,
021102
(
2007
).
54.
T. H.
Haveliwala
,
IEEE Trans. Knowl. Data Eng.
15
,
784
796
(
2003
).
55.
A. N.
Langville
and
C. D.
Meyer
,
Google’s PageRank and Beyond the Science of Search Engine Rankings
(
Princeton University Press
,
2011
).
56.
F.
Tian
,
Y.
Chen
,
X.
Wang
,
T.
Lan
,
Q.
Zheng
, and
K. M.
Chao
, “
2015 Common features based volunteer and voluntary activity recommendation algorithm
,” in
2015 IEEE 12th International Conference on e-Business Engineering
(
IEEE
,
2015
), pp.
43
47
.
57.
A.
Kulig
,
S.
Drożdż
,
J.
Kwapień
, and
Q.
Oświȩcimka
,
Phys. Rev. E
91
,
032810
(
2015
).
58.
M. E. J.
Newman
,
Phys. Rev. E
64
,
016132
(
2001
).
59.
M.
Yusupov
,
E. C.
Neyts
,
P.
Simon
,
G.
Berdiyorov
,
R.
Snoeckx
,
A. C. T.
van Duin
, and
A.
Bogaerts
,
J. Phys. D: Appl. Phys.
47
,
025205
(
2013
).
60.
M. A.
Lieberman
,
Plasma Sources Sci. Technol.
24
,
025009
(
2015
).
61.
T.
Murakami
,
K.
Niemi
,
T.
Gans
,
D.
O’Connell
, and
W. G.
Graham
,
Plasma Sources Sci. Technol.
22
,
015003
(
2012
).
62.
A. V.
Phelps
and
L. C.
Pitchford
,
Phys. Rev. A
31
,
2932
(
1985
).
63.
Y.
Itikawa
,
A.
Ichimura
,
K.
Onda
,
K.
Sakimoto
, and
K.
Takayanagi
,
J. Phys. Chem. Ref. Data
18
,
23
42
(
1989
).
64.
R.
Henry
,
P.
Burke
, and
A. L.
Sinfailam
,
Phys. Rev.
178
,
218
225
(
1969
).
65.
C. P.
Malone
,
P. V.
Johnson
,
X.
Liu
,
B.
Ajdari
,
I.
Kanik
, and
M. A.
Khakoo
,
Phys. Rev. A
85
,
062704
(
2012
).
66.
R. R.
Laher
and
F. R.
Gilmore
,
J. Phys. Chem. Ref. Data
19
,
277
305
(
1990
).
67.
Y.
Itikawa
,
A.
Ichimura
,
K.
Onda
,
K.
Sakimoto
,
K.
Takayanagi
,
Y.
Hatano
,
M.
Hayashi
,
H.
Nishimura
, and
S.
Tsurubuchi
,
J. Phys. Chem. Ref. Data
18
,
23
(
1989
).
68.
B.
Eliasson
and
U.
Kogelschatz
,
Basic Data for Modelling of Electrical Discharges in Gases: Oxygen
(
ABB Asea Brown Boveri
,
1986
).
69.
M.
Yousfi
and
M. D.
Benabdessadok
,
J. Appl. Phys.
80
,
6619
(
1996
).
70.
Y.
Itikawa
and
N.
Mason
,
J. Phys. Chem. Ref. Data
34
,
1
22
(
2005
).
71.
V. G.
Samiolovich
,
M. P.
Popovich
,
Y. M.
Emelyanov
, and
Y. V.
Filippov
,
J. Phys. Chem.
40
,
287
(
1966
).
72.
J. W.
McConkey
,
C. P.
Malone
,
P. V.
Johnson
,
C.
Winstead
,
V.
Mckoy
, and
I.
Kanik
,
Phys. Rep.
466
,
1
103
(
2008
).
73.
D.
Rapp
and
D. D.
Briglia
,
J. Chem. Phys.
43
,
1480
1489
(
1965
).
74.
H.
Matzing
,
Adv. Chem. Phys.
80
,
315
402
(
2007
).
75.
M.
Capitelli
,
C. M.
Ferreira
,
B. F.
Gordiets
, and
A. I.
Osipov
,
Plasma Kinetics in Atmospheric Gases
(
Springer
,
Berlin
,
2000
).
76.
I. A.
Kossyi
,
A. Yu.
Kostinsky
,
A. A.
Matveyev
, and
V. P.
Silakov
,
Plasma Sources Sci. Technol.
1
,
207
(
1992
).
77.
V. G.
Anicich
,
J. Phys. Chem. Ref. Data
22
,
1469
(
1993
).
78.
L. W.
Sieck
,
J. T.
Heron
, and
D. S.
Green
,
Plasma Chem. Plasma Process.
20
,
235
(
2000
).
79.
R.
Dorai
and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
36
,
666
(
2003
).
80.
R. E.
Olson
,
J. R.
Peterson
, and
J. T.
Moseley
,
J. Chem. Phys.
53
,
3391
(
1970
).
81.
M. H.
Bortner
and
T.
Baurer
, “Defense nuclear agency reaction rate handbook second edition, section 24 revision no 7,” NTIS AD-763699,
1979
.
82.
T. D.
Märk
and
H. J.
Oskam
,
Phys. Rev. A
4
,
1445
(
1971
).
83.
J. T.
Herron
and
D. S.
Green
,
Plasma Chem. Plasma Process.
21
,
459
(
2001
).
84.
D. S.
Stafford
and
M. J.
Kushner
,
J. Appl. Phys.
96
,
2451
(
2004
).
85.
A.
Cenian
,
A.
Chernukho
, and
V.
Borodin
,
Contrib. Plasma Phys.
35
,
273
(
1995
).
86.
R. J.
Vidmar
and
K. R.
Stalder
, “2004 AFOSR final performance report (computations of the power to sustain plasma in air with relevance to aerospace technology. Final report prepared for Air Force Office of Scientific Research,” Report No. AFRISRARRE040123. Contact No. F49620-01-0414, 2004.
87.
R. L.
Champion
,
L. D.
Doverspike
, and
S. K.
Lam
,
Phys. Rev. A
13
,
617
621
(
1976
).
88.
E. W.
McDaniel
,
M. R.
Flannery
,
E. W.
Thomas
,
H. W.
Ellis
,
K. J.
McCann
,
S. T.
Manson
,
J. W.
Gallagher
,
J. R.
Rumble
,
E. C.
Beaty
, and
T. G.
Roberts
, US Army Missile Research and Development Command Technical Report No. H-78-1, 1978.
89.
R. P.
Cardoso
,
T.
Belmonte
,
G.
Henrion
, and
N.
Sadeghi
,
J. Phys. D: Appl. Phys.
39
,
4178
4185
(
2006
).
90.
T.
Shibata
,
T.
Fukuyama
, and
K.
Kuchitsu
,
J. Mass Spectrom. Soc. Jpn.
21
,
217
221
(
1973
).
91.
Y. B.
Golubovskii
,
V. A.
Maiorov
,
J.
Behnke
, and
J. F.
Behnke
,
J. Phys. D: Appl. Phys.
36
,
39
(
2003
).
92.
K.
Niemi
,
J.
Waskoenig
,
N.
Sadeghi
,
T.
Gans
, and
D.
O’Connell
,
Plasma Sources Sci. Technol.
20
,
055005
(
2011
).
93.
T.
Martens
,
A.
Bogaerts
,
W. J. M.
Brok
, and
J. V.
Dijk
,
Appl. Phys. Lett.
92
,
041504
(
2008
).
94.
F.
Tochikubo
and
H.
Arai
,
Jpn. J. Appl. Phys.
41
,
844
(
2002
).
95.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
,
M. J.
Rossi
, and
J.
Troe
,
J. Phys. Chem. Ref. Data
26
,
1329
(
1997
).
96.
M. J.
Kushner
,
J. Appl. Phys.
74
,
6538
(
1993
).
97.
M.
Castillo
,
I.
Méndez
,
A. M.
Islyaikin
,
V. J.
Herrero
, and
I.
Tanarro
,
J. Phys. Chem. A
109
,
6255
(
2005
).
98.
See http://www.me.berkeley.edu/gri-mech/ for “GRI-MECH 3 Reaction Rate Database.”
99.
R. E.
Olson
,
J. R.
Peterson
, and
J. T.
Moseley
,
J. Chem. Phys.
53
,
3391
(
1970
).
You do not currently have access to this content.