The CO2 laser material interaction is commonly used for thermal treatments and processing of fused silica glasses. As the laser pulse duration decreases down to a few tens of microseconds, the heat-affected depth in the material decreases up to the point where it has the same magnitude as the laser radiation penetration depth, which is an interesting operating point for applications that require minimal heat-affected zone. In this work, we explore the effects of CO2 laser pulses in the range of 100 μs to a few milliseconds on the laser ablation of polished fused silica surfaces, based on experiments and numerical simulations. We particularly study the evolution of surface profile as a function of the number of applied pulses. The results suggest that the ablation depth can be accurately controlled from a few hundreds of nanometers to a few tens of micrometers by adjusting the combination of the number of applied pulses and pulse duration.

1.
C.
Weingarten
,
A.
Schmickler
,
E.
Willenborg
,
K.
Wissenbach
, and
R.
Poprawe
, “
Laser polishing and laser shape correction of optical glass
,”
J. Laser Appl.
29
,
011702
(
2017
).
2.
S.
Schwarz
,
S.
Rung
,
C.
Esen
, and
R.
Hellmann
, “
Fabrication of a high-quality axicon by femtosecond laser ablation and CO2 laser polishing for quasi-bessel beam generation
,”
Opt. Express
26
,
023287
(
2018
).
3.
L.
Zhao
,
J.
Cheng
,
M.
Chen
,
X.
Yuan
,
W.
Liao
,
Q.
Liu
,
H.
Yang
, and
H.
Wang
, “
Formation mechanism of a smooth, defect-free surface of fused silica optics using rapid CO2 laser polishing
,”
Int. J. Extreme Manuf.
1
,
035001
(
2019
).
4.
Z.
Cao
,
C.
Wei
,
X.
Cheng
,
Y.
Zhao
,
X.
Peng
,
Z.
Jiang
, and
J.
Shao
, “
Ground fused silica processed by combined chemical etching and CO2 laser polishing with super-smooth surface and high damage resistance
,”
Opt. Lett.
45
,
6014
6017
(
2020
).
5.
C.
Kim
,
I.
Sohn
,
Y.
Lee
,
C.
Byeon
,
S.
Kim
,
H.
Park
, and
H.
Lee
, “
Fabrication of a fused silica based mold for the microlenticular lens array using a femtosecond laser and a CO2 laser
,”
Opt. Mater. Express
4
,
2233
(
2014
).
6.
K.
Wlodarczyk
,
N.
Weston
,
M.
Ardron
, and
D.
Hand
, “
Direct CO2 laser-based generation of holographic structures on the surface of glass
,”
Opt. Express
24
,
1447
(
2016
).
7.
K.
Ott
,
S.
Garcia
,
R.
Kohlhaas
,
K.
Schüppert
,
P.
Rosenbusch
,
R.
Long
, and
J.
Reichel
, “
Millimeter-long fiber Fabry-Perot cavities
,”
Opt. Express
24
,
9839
9853
(
2016
).
8.
C.
Zhang
,
W.
Liao
,
K.
Yang
,
T.
Liu
,
Y.
Bai
,
L.
Zhang
,
X.
Jiang
,
J.
Chen
,
Y.
Jiang
,
H.
Wang
,
X.
Luan
,
H.
Zhou
,
X.
Yuan
, and
W.
Zheng
, “
Fabrication of concave microlens arrays by local fictive temperature modification of fused silica
,”
Opt. Lett.
42
,
1093
(
2017
).
9.
M.
Lai
,
K.
Lim
,
D.
Gunawardena
,
H.
Yang
,
W.
Chong
, and
H.
Ahmad
, “
Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing
,”
Opt. Lett.
40
,
748
(
2015
).
10.
K.
Boyd
,
N.
Simakov
,
A.
Hemming
,
J.
Daniel
,
J.
Swain
,
E.
Mies
,
S.
Rees
,
W.
Clarkson
, and
J.
Haus
, “
CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers
,”
Appl. Opt.
55
,
2915
(
2016
).
11.
E.
Uzcengiz Simsek
,
B.
Simsek
, and
B.
Ortaç
, “
CO2 laser polishing of conical shaped optical fiber deflectors
,”
Appl. Phys. B
123
,
176
(
2017
).
12.
H.
Nguyen
,
M. M. P.
Arnob
,
A. T.
Becker
,
J. C.
Wolfe
,
M. K.
Hogan
,
P. J.
Horner
, and
W.-C.
Shih
, “
Fabrication of multipoint side-firing optical fiber by laser micro-ablation
,”
Opt. Lett.
42
,
1808
1811
(
2017
).
13.
S.
Fan
and
N.
Healy
, “
CO2 laser-based side-polishing of silica optical fibers
,”
Opt. Lett.
45
,
4128
4131
(
2020
).
14.
M.
Matthews
,
S.
Yang
,
N.
Shen
,
S.
Elhadj
,
R.
Raman
,
G.
Guss
,
I.
Bass
,
M.
Nostrand
, and
P.
Wegner
, “
Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams
,”
Adv. Eng. Mater.
17
,
247
(
2015
).
15.
P.
Cormont
,
A.
Bourgeade
,
S.
Cavaro
,
T.
Donval
,
T.
Doualle
,
G.
Gaborit
,
L.
Gallais
,
L.
Lamaignère
, and
J.-L.
Rullier
, “
Relevance of carbon dioxide laser to remove scratches on large fused silica polished optics
,”
Adv. Eng. Mater.
17
,
253
(
2015
).
16.
T.
Doualle
,
L.
Gallais
,
S.
Monneret
,
S.
Bouillet
,
A.
Bourgeade
,
C.
Ameil
,
L.
Lamaignère
, and
P.
Cormont
, “
CO2 laser microprocessing for laser damage growth mitigation of fused silica optics
,”
Opt. Eng.
56
,
011022
(
2017
).
17.
C.
Tan
,
L.
Zhao
,
M.
Chen
,
J.
Cheng
,
C.
Wu
,
Q.
Liu
,
H.
Yang
,
Z.
Yin
, and
W.
Liao
, “
Experimental and theoretical investigation of localized CO2 laser interaction with fused silica during the process of surface damage mitigation
,”
Results Phys.
16
,
102936
(
2020
).
18.
C.
Zhang
,
L.
Zhang
,
X.
Jiang
,
B.
Jia
,
W.
Liao
,
R.
Dai
,
J.
Chen
,
X.
Yuan
, and
X.
Jiang
, “
Influence of pulse length on heat affected zones of evaporatively-mitigated damages of fused silica optics by CO2 laser
,”
Opt. Lasers Eng.
125
,
105857
(
2020
).
19.
Y.
Xiao
and
M.
Bass
, “
Thermal stress limitations to laser fire polishing of glasses
,”
Appl. Opt.
22
,
2933
(
1983
).
20.
G.
Allcock
,
D.
Dyer
,
G.
Elliner
, and
H.
Snelling
, “
Experimental observations and analysis of CO2 laser-induced microcracking of glass
,”
J. Appl. Phys.
78
,
7295
(
1995
).
21.
M.
Feit
,
A.
Rubenchik
,
C.
Boley
, and
M.
Rotter
,
Proc. SPIE
5273
,
145
154
(
2004
).
22.
K.
Nowak
,
H.
Baker
, and
D. R.
Hall
, “
Analytical model for CO2 laser ablation of fused quartz
,”
Appl. Opt.
54
,
8653
(
2015
).
23.
R.
Vignes
,
T.
Soules
,
J.
Stolken
,
R.
Settgast
,
S.
Elhadj
, and
M.
Matthews
, “
Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures
,”
J. Am. Ceram. Soc.
96
,
137
145
(
2013
).
24.
T.
Doualle
,
L.
Gallais
,
P.
Cormont
,
D.
Hebert
,
P.
Combis
, and
J.-L.
Rullier
, “
Thermo-mechanical simulations of CO2 laser-fused silica interactions
,”
J. Appl. Phys.
119
,
113106
(
2016
).
25.
L.
Robin
,
P.
Combis
,
P.
Cormont
,
L.
Gallais
,
D.
Hebert
,
C.
Mainfray
, and
J. L.
Rullier
, “
Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation
,”
J. Appl. Phys.
111
,
063106
(
2012
).
26.
T.
Doualle
,
L.
Gallais
,
P.
Cormont
,
T.
Donval
,
L.
Lamaignère
, and
J. L.
Rullier
, “
Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces
,”
J. Appl. Phys.
119
,
213106
(
2016
).
27.
T.
Doualle
,
A.
Ollé
,
P.
Cormont
,
S.
Monneret
, and
L.
Gallais
, “
Laser-induced birefringence measurements by quantitative polarized-phase microscopy
,”
Opt. Lett.
42
,
1616
(
2017
).
28.
A. D.
McLachlan
and
F. P.
Meyer
, “
Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths
,”
Appl. Opt.
26
,
1728
(
1987
).
29.
P.
Combis
,
P.
Cormont
,
L.
Gallais
,
D.
Hebert
,
L.
Robin
, and
J.-L.
Rullier
, “
Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations
,”
Appl. Phys. Lett.
101
,
211908
(
2012
).
30.
T. D.
Bennett
,
D. J.
Krajnovich
, and
L.
Li
, “
Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses
,”
J. Appl. Phys.
85
,
153
(
1999
).
31.
T. D.
Bennett
,
D. J.
Krajnovich
,
L.
Li
, and
D.
Wan
, “
Mechanism of topography formation during CO2 laser texturing of silicate glasses
,”
J. Appl. Phys.
84
,
2897
2905
(
1998
).
32.
M.
Tomozawa
,
A.
Koike
, and
S.-R.
Ryu
, “
Exponential structural relaxation of a high purity silica glass
,”
J. Non-Cryst. Solids
354
,
4685
(
2008
).
33.
T.
Doualle
,
L.
Gallais
,
P.
Cormont
,
T.
Donval
,
L.
Lamaignere
, and
J.
Rullier
, “
Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces
,”
J. Appl. Phys.
119
,
213106
(
2016
).
34.
J.
Shelby
, “
Density of vitreous silica
,”
J. Non-Cryst. Solids
349
,
331
(
2016
).
35.
M. D.
Feit
,
M. J.
Matthews
,
T. F.
Soules
,
J. S.
Stolken
,
R. M.
Vignes
,
S. T.
Yang
, and
J. D.
Cooke
,
Proc. SPIE
7842, 189–193 (2010).
36.
C.
Weingarten
,
A.
Schmickler
,
E.
Willenborg
,
K.
Wissenbach
, and
R.
Poprawe
, “
Laser polishing and laser shape correction of optical glass
,”
J. Laser Appl.
29
,
011702
(
2017
).
37.
E.
Mendez
,
K. M.
Nowak
,
H. J.
Baker
,
F. J.
Villarreal
, and
D. R.
Hall
, “
Localized CO2 laser damage repair of fused silica optics
,”
Appl. Opt.
45
,
5358
5367
(
2006
).
38.
S.
Elhadj
,
M.
Matthews
,
G.
Guss
, and
I.
Bass
, “
Laser-based dynamic evaporation and surface shaping of fused silica with assist gases: A path to rimless laser machining
,”
Appl. Phys. B
113
,
307
(
2013
).
39.
L.
Robin
,
P.
Combis
,
P.
Cormont
,
L.
Gallais
,
D.
Hebert
,
C.
Mainfray
, and
J.-L.
Rullier
, “
Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation
,”
J. Appl. Phys.
111
,
063106
(
2012
).
40.
H. L.
Schick
, “
A thermodynamic analysis of the high-temperature vaporization properties of silica
,”
Chem. Rev.
60
,
331
362
(
1960
).
41.
S.
Elhadj
,
M. J.
Matthews
,
S. T.
Yang
, and
D. J.
Cooke
, “
Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics
,”
Opt. Express
20
,
1575
1587
(
2012
).
You do not currently have access to this content.