We report on enhanced third-harmonic generation based on intersubband transitions in an asymmetric InxGa1-xN/InN double quantum well. We give a comprehensive account of the influences of different structural parameters such as doping concentration, thickness of layers, and indium mole composition of barriers on the intersubband transition quantities and then their nonlinear response. The conduction band parameters are computed by the numerical solution to Schrödinger and Poisson equations within nonparabolic band approximation. More importantly, the participation of each electron scattering process, e.g., LO phonon scattering in the electron relaxation time and linewidth values, is calculated, so that it can be considered a reference to provide a heterostructure with optimum functionality. Finally, two optimized double quantum wells are designed at the fundamental photon energies of 117 and 144 meV, which exhibit remarkable third-order susceptibility up to 1.2×103 and 103μm2/V2, respectively. This study opens a new path to design a suitable InxGa1-xN/InN heterostructure for a third-harmonic generation process from the far- to near-infrared band, which promises various applications in optoelectronic devices.

1.
E.
Rosencher
,
P.
Bois
,
J.
Nagle
, and
S.
Delaitre
, “
Second harmonic generation by intersub-band transitions in compositionally asymmetrical MQWs
,”
Electron. Lett.
25
,
1063
1065
(
1989
).
2.
F.
Capasso
,
C.
Sirtori
, and
A. Y.
Cho
, “
Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared
,”
IEEE J. Quantum Electron.
30
,
1313
1326
(
1994
).
3.
H.
Xie
,
W.
Wang
,
J.
Meyer
, and
L.
Ram-Mohan
, “
Normal incidence second-harmonic generation in L-valley AlSb/GaSb/Ga1-xAlxSb/AlSb stepped quantum wells
,”
Appl. Phys. Lett.
65
,
2048
2050
(
1994
).
4.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
, “
Optimized second-harmonic generation in asymmetric double quantum wells
,”
IEEE J. Quantum Electron.
32
,
1334
1346
(
1996
).
5.
Y.
Li
,
A.
Bhattacharyya
,
C.
Thomidis
,
T. D.
Moustakas
, and
R.
Paiella
, “
Ultrafast all-optical switching with low saturation energy via intersubband transitions in GaN/AlN quantum-well waveguides
,”
Opt. Express
15
,
17922
17927
(
2007
).
6.
N.
Iizuka
,
H.
Yoshida
,
N.
Managaki
,
T.
Shimizu
,
S.
Hassanet
,
C.
Cumtornkittikul
,
M.
Sugiyama
, and
Y.
Nakano
, “
Integration of GaN/AlN all-optical switch with SiN/AlN waveguide utilizing spot-size conversion
,”
Opt. Express
17
,
23247
23253
(
2009
).
7.
F. F.
Sudradjat
,
W.
Zhang
,
J.
Woodward
,
H.
Durmaz
,
T. D.
Moustakas
, and
R.
Paiella
, “
Far-infrared intersubband photodetectors based on double-step III-nitride quantum wells
,”
Appl. Phys. Lett.
100
,
241113
(
2012
).
8.
K.
Sato
,
S.
Yasue
,
Y.
Ogino
,
S.
Tanaka
,
M.
Iwaya
,
T.
Takeuchi
,
S.
Kamiyama
, and
I.
Akasaki
, “
Light confinement and high current density in UVB laser diode structure using Al composition-graded p-AlGaN cladding layer
,”
Appl. Phys. Lett.
114
,
191103
(
2019
).
9.
J.
Henson
,
E.
Dimakis
,
J.
DiMaria
,
R.
Li
,
S.
Minissale
,
L. D.
Negro
,
T. D.
Moustakas
, and
R.
Paiella
, “
Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays
,”
Opt. Express
18
,
21322
21329
(
2010
).
10.
H.
Zhang
,
J.
Zhu
,
Z.
Zhu
,
Y.
Jin
,
Q.
Li
, and
G.
Jin
, “
Surface-plasmon-enhanced GaN-LED based on a multilayered m-shaped nano-grating
,”
Opt. Express
21
,
13492
13501
(
2013
).
11.
I.
Saidi
,
L.
Bouzaïene
,
M.
Gazzah
,
H.
Mejri
, and
H.
Maaref
, “
Back doping design in delta-doped AlGaN/GaN heterostructure field-effect transistors
,”
Solid State Commun.
140
,
308
312
(
2006
).
12.
M.
Gonschorek
,
J.-F.
Carlin
,
E.
Feltin
,
M.
Py
, and
N.
Grandjean
, “
Self heating in AlInN/AlN/GaN high power devices: Origin and impact on contact breakdown and IV characteristics
,”
J. Appl. Phys.
109
,
063720
(
2011
).
13.
L.
Nevou
,
M.
Tchernycheva
,
F.
Julien
,
M.
Raybaut
,
A.
Godard
,
E.
Rosencher
,
F.
Guillot
, and
E.
Monroy
, “
Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells
,”
Appl. Phys. Lett.
89
,
151101
(
2006
).
14.
A.
Rostami
,
H.
Baghban Asghari Nejad
, and
H.
Rasooli Saghai
, “
Highly enhanced second-order nonlinear susceptibilities in tailored GaN–AlGaN–AlN quantum well structures
,”
Physica B
403
,
2725
2731
(
2008
).
15.
F.
Wu
,
W.
Tian
,
J.
Zhang
,
S.
Wang
,
Q. X.
Wan
,
J. N.
Dai
,
Z. H.
Wu
,
J. T.
Xu
,
X. Y.
Li
,
Y. Y.
Fang
, and
C. Q.
Chen
, “
Double-resonance enhanced intersubband second-order nonlinear optical susceptibilities in GaN/AlGaN step quantum wells
,”
Opt. Express
22
,
14212
14220
(
2014
).
16.
I.
Saidi
, “
Single- and double-resonant enhancement of second-harmonic generation in asymmetric AlGaN/GaN/AlGaN quantum well heterostructures
,”
J. Appl. Phys.
125
,
185702
(
2019
).
17.
I.
Saidi
, “
Intersubband resonant enhancement of second order-nonlinear susceptibility in asymmetric AlxGa1−xN/GaN double quantum wells
,”
J. Appl. Phys.
126
,
135704
(
2019
).
18.
J.
Lee
,
M.
Tymchenko
,
C.
Argyropoulos
,
P.-Y.
Chen
,
F.
Lu
,
F.
Demmerle
,
G.
Boehm
,
M.-C.
Amann
,
A.
Alu
, and
M. A.
Belkin
, “
Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions
,”
Nature
511
,
65
69
(
2014
).
19.
J.
Lee
,
N.
Nookala
,
J. S.
Gomez-Diaz
,
M.
Tymchenko
,
F.
Demmerle
,
G.
Boehm
,
M.-C.
Amann
,
A.
Alù
, and
M. A.
Belkin
, “
Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response
,”
Adv. Opt. Mater.
4
,
664
670
(
2016
).
20.
J. S.
Gomez-Diaz
,
M.
Tymchenko
,
J.
Lee
,
M. A.
Belkin
, and
A.
Alù
, “
Nonlinear processes in multi-quantum-well plasmonic metasurfaces: Electromagnetic response, saturation effects, limits, and potentials
,”
Phys. Rev. B
92
,
125429
(
2015
).
21.
Y.
Liu
,
J.
Lee
,
S.
March
,
N.
Nookala
,
D.
Palaferri
,
J. F.
Klem
,
S. R.
Bank
,
I.
Brener
, and
M. A.
Belkin
, “
Difference-frequency generation in polaritonic intersubband nonlinear metasurfaces
,”
Adv. Opt. Mater.
6
,
1800681
(
2018
).
22.
M.
Tymchenko
,
J. S.
Gomez-Diaz
,
J.
Lee
,
M. A.
Belkin
, and
A.
Alù
, “
Highly-efficient THz generation using nonlinear plasmonic metasurfaces
,”
J. Opt.
19
,
104001
(
2017
).
23.
J.
Yu
,
S.
Park
,
I.
Hwang
,
D.
Kim
,
J.-Y.
Jung
, and
J.
Lee
, “
Third-harmonic generation from plasmonic metasurfaces coupled to intersubband transitions
,”
Adv. Opt. Mater.
7
,
1801510
(
2019
).
24.
T.
Zahedi
,
Z. H.
Firouzeh
, and
A. Z.
Nezhad
, “
Design and modeling of third-harmonic plasmonic metasurfaces coupled to multi-quantum well structures
,”
J. Opt. Soc. Am. B
36
,
2429
2437
(
2019
).
25.
P.
Harrison
and
A.
Valavanis
,
Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures
(
Wiley
,
2016
).
26.
G.
Mueller
,
Intersubband Transitions in Quantum Wells: Physics and Device Applications II
(
Elsevier Science
,
1999
).
27.
E.
Weber
,
R.
Willardson
,
H.
Liu
, and
F.
Capasso
,
Intersubband Transitions in Quantum Wells: Physics and Device Applications
(
Elsevier Science
,
1999
).
28.
O.
Ambacher
,
J.
Majewski
,
C.
Miskys
,
A.
Link
,
M.
Hermann
,
M.
Eickhoff
,
M.
Stutzmann
,
F.
Bernardini
,
V.
Fiorentini
,
V.
Tilak
,
B.
Schaff
, and
L. F.
Eastman
, “
Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures
,”
J. Phys.: Condens. Matter
14
,
3399
3434
(
2002
).
29.
S.
Chuang
, Physics of Photonic Devices, Wiley Series in Pure and Applied Optics (Wiley, 2009).
30.
H.
Morkoç
, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth, Handbook of Nitride Semiconductors and Devices (Wiley, 2009).
31.
H.
Morkoç
, Handbook of Nitride Semiconductors and Devices, Electronic and Optical Processes in Nitrides, Handbook of Nitride Semiconductors and Devices (Wiley, 2009).
32.
P.
Kinsler
,
P.
Harrison
, and
R. W.
Kelsall
, “
Intersubband electron-electron scattering in asymmetric quantum wells designed for far-infrared emission
,”
Phys. Rev. B
58
,
4771
4778
(
1998
).
33.
T.
Unuma
,
M.
Yoshita
,
T.
Noda
,
H.
Sakaki
, and
H.
Akiyama
, “
Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities
,”
J. Appl. Phys.
93
,
1586
1597
(
2003
).
34.
R.
Boyd
,
Nonlinear Optics
(
Elsevier Science
,
2019
).
You do not currently have access to this content.