Co-implantation of Mg with N has been shown to improve p-type conductivity in Mg-implanted GaN. Achievement of p-type material still requires temperatures beyond the thermodynamic stability of GaN, however. In this study, we present results of implantation and anneal activation of GaN, co-implanted with Mg and N or Mg only by repeated, short thermal cycles of 1350 °C using a high-power gyrotron microwave source with a quasi-gaussian intensity profile. Spatial variations in optical and electrical properties of the resulting films are characterized by photoluminescence and diode IV and CV measurements. Resistive Mg/N co-implanted and annealed material shows dominant luminescence of the VN-related green luminescence (GL2) band at 2.37 eV and relatively lower intensity acceptor-related ultraviolet luminescence (UVL) at 3.27 eV. However, a material showing p–n diode behavior shows higher-intensity UVL luminescence and suppression of the GL2 band, permitting observation of the yellow luminescence (YL) present in the as-grown GaN. The YL is attributed to unintentionally introduced CN–ON complexes and is commonly observed in GaN grown by metalorganic chemical vapor deposition but is typically absent in implanted/annealed GaN. Co-implanted material is compared to material implanted only with Mg and annealed under the same conditions, which shows p-type activation, but contains persistent GL2 luminescence post-anneal and lowers maximum hole concentration.

1.
I.
Mahaboob
,
R.
Reinertsen
,
B.
McEwen
,
K.
Hogan
,
E.
Rocco
,
J.
Melendez
,
N.
Cady
, and
F.
Shahedipour-Sandvik
, “
Boronate probe-based hydrogen peroxide detection with AlGaN/GaN HEMT sensor
,”
Exp. Biol. Med.
246
(
5
),
523
528
(
2020
).
2.
I.
Mahaboob
,
M.
Yakimov
,
E.
Rocco
,
K.
Hogan
, and
K.
Shahedipour-Sandvik
, “
Drain-voltage-induced secondary effects in AlGaN/GaN HEMTs with integrated body-diode
,”
IEEE Trans. Electron Devices
67
(
10
),
3983
3987
(
2020
).
3.
M.
Shurrab
,
A.
Siddiqui
, and
S.
Singh
, “
Counter-doped multizone junction termination extension structures in vertical GaN diodes
,”
IEEE J. Electron Devices Soc.
7
,
287
294
(
2019
).
4.
J.
Marini
,
I.
Mahaboob
,
E.
Rocco
,
L. D.
Bell
, and
F.
Shahedipour-Sandvik
, “
Polarization engineered N-polar Cs-free GaN photocathodes
,”
J. Appl. Phys.
124
(
11
),
113101
(
2018
).
5.
A. G.
Jacobs
,
B. N.
Feigelson
,
J. K.
Hite
,
C. A.
Gorsak
,
L. E.
Luna
,
T. J.
Anderson
, and
F. J.
Kub
, “
Polarity dependent implanted p-type dopant activation in GaN
,”
Jpn. J. Appl. Phys.
58
(
SC
),
SCCD07
(
2019
).
6.
T. J.
Anderson
,
A. D.
Koehler
,
B.
Feigelson
,
K. D.
Hobart
, and
F. J.
Kub
, “
Improved vertical GaN diodes with Mg ion implanted junction termination extension
,”
ECS Trans.
75
(
12
),
93
(
2016
).
7.
G. W.
Pickrell
,
A. M.
Armstrong
,
A. A.
Allerman
,
M. H.
Crawford
,
K. C.
Cross
,
C. E.
Glaser
, and
V. M.
Abate
, “
Regrown vertical GaN p–n diodes with low reverse leakage current
,”
J. Electron. Mater.
48
(
5
),
3311
3316
(
2019
).
8.
K.
Iwata
,
H.
Sakurai
,
S.
Arai
,
T.
Nakashima
,
T.
Narita
,
K.
Kataoka
,
M.
Bockowski
,
M.
Nagao
,
J.
Suda
,
T.
Kachi
, and
N.
Ikarashi
, “
Defect evolution in Mg ions implanted GaN upon high temperature and ultrahigh N2 partial pressure annealing: Transmission electron microscopy analysis
,”
J. Appl. Phys.
127
(
10
),
105106
(
2020
).
9.
K.
Lorenz
,
E.
Wendler
,
A.
Redondo-Cubero
,
N.
Catarino
,
M.
Chauvat
,
S.
Schwaiger
,
F.
Scholz
,
E.
Alves
, and
P.
Ruterana
, “
Implantation damage formation in a-, c- and m-plane GaN
,”
Acta Mater.
123
,
177
187
(
2017
).
10.
J.
Unland
,
B.
Onderka
,
A.
Davydov
, and
R.
Schmid-Fetzer
, “
Thermodynamics and phase stability in the Ga–N system
,”
J. Cryst. Growth
256
(
1–2
),
33
51
(
2003
).
11.
J. D.
Greenlee
,
B. N.
Feigelson
,
T. J.
Anderson
,
J. K.
Hite
,
K. D.
Hobart
, and
F. J.
Kub
, “
Symmetric multicycle rapid thermal annealing: Enhanced activation of implanted dopants in GaN
,”
ECS J. Solid State Sci. Technol.
4
(
9
),
P382
P386
(
2015
).
12.
K.
Kojima
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
,
M.
Shimizu
,
T.
Takahashi
,
S.
Ishibashi
,
A.
Uedono
, and
S.
Chichibu
, “
Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate
,”
Appl. Phys. Express
10
(
6
),
061002
(
2017
).
13.
S. F.
Chichibu
,
K.
Shima
,
K.
Kojima
,
S.
Ishibashi
, and
A.
Uedono
, “
Origin and dynamic properties of major intrinsic nonradiative recombination centers in wide bandgap nitride semiconductors
,”
Proc. SPIE
11280
,
112800B
(
2020
).
14.
A.
Uedono
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
,
H.
Matsuyama
,
H.
Kudo
,
H.
Naramoto
, and
S.
Ishibashi
, “
Vacancy-type defects and their annealing behaviors in Mg-implanted GaN studied by a monoenergetic positron beam
,”
Phys. Status Solidi B
252
(
12
),
2794
2798
(
2015
).
15.
H.
Sakurai
,
M.
Omori
,
S.
Yamada
,
Y.
Furukawa
,
H.
Suzuki
,
T.
Narita
,
K.
Kataoka
,
M.
Horita
,
M.
Bockowski
,
J.
Suda
, and
T.
Kachi
, “
Highly effective activation of Mg-implanted p-type GaN by ultra-high-pressure annealing
,”
Appl. Phys. Lett.
115
(
14
),
142104
(
2019
).
16.
M. A.
Reshchikov
,
N. M.
Albarakati
,
M.
Monavarian
,
V.
Avrutin
, and
H.
Morkoç
, “
Thermal quenching of the yellow luminescence in GaN
,”
J. Appl. Phys.
123
(
16
),
161520
(
2018
).
17.
V.
Meyers
,
E.
Rocco
,
T.
Anderson
,
J.
Gallagher
,
M.
Ebrish
,
K.
Jones
,
M.
Derenge
,
M.
Shevelev
,
V.
Sklyar
,
K.
Hogan
,
B.
McEwen
, and
F.
Shahedipour-Sandvik
, “
p-type conductivity and damage recovery in implanted GaN annealed by rapid gyrotron microwave annealing
,”
J. Appl. Phys.
128
(
8
),
085701
(
2020
).
18.
R.
Tanaka
,
S.
Takashima
,
K.
Ueno
,
H.
Matsuyama
, and
M.
Edo
, “
Demonstration of 1200 V/1.4 mΩ cm2 vertical GaN planar MOSFET fabricated by an all ion implantation process
,”
Jpn. J. Appl. Phys.
59
(
SG
),
SGGD02
(
2020
).
19.
K. T.
Liu
,
Y. K.
Su
,
S. J.
Chang
, and
Y.
Horikoshi
, “
Magnesium/nitrogen and beryllium/nitrogen coimplantation into GaN
,”
J. Appl. Phys.
98
(
7
),
073702
(
2005
).
20.
C. E.
Hager
,
K. A.
Jones
,
M. A.
Derenge
, and
T. S.
Zheleva
, “
Activation of ion implanted Si in GaN using a dual AlN annealing cap
,”
J. Appl. Phys.
105
(
3
),
033713
(
2009
).
21.
J. D.
Greenlee
,
T. J.
Anderson
,
B. N.
Feigelson
,
A. D.
Koehler
,
K. D.
Hobart
, and
F. J.
Kub
, “
Characterization of a selective AlN wet etchant
,”
Appl. Phys. Express
8
(
3
),
036501
(
2015
).
22.
M. A.
Reshchikov
and
H.
Morkoç
, “
Luminescence from defects in GaN
,”
Physica B
376–377
,
428
431
(
2006
).
23.
D. O.
Demchenko
,
I. C.
Diallo
, and
M. A.
Reshchikov
, “
Yellow luminescence of gallium nitride generated by carbon defect complexes
,”
Phys. Rev. Lett.
110
(
8
),
087404
(
2013
).
24.
M. A.
Reshchikov
,
P.
Ghimire
, and
D. O.
Demchenko
, “
Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN
,”
Phys. Rev. B
97
(
20
),
205204
(
2018
).
25.
M. A.
Reshchikov
,
D. O.
Demchenko
,
J. D.
McNamara
,
S.
Fernández-Garrido
, and
R.
Calarco
, “
Green luminescence in Mg-doped GaN
,”
Phys. Rev. B
90
(
3
),
035207
(
2014
).
26.
H.
Sakurai
,
M.
Omori
,
S.
Yamada
,
Y.
Furukawa
,
H.
Suzuki
,
T.
Narita
,
K.
Kataoka
,
M.
Bockowski
,
J.
Suda
, and
T.
Kachi
, “
Recent progress of Mg-ion implantation and thermal activation process for p-doping in GaN
,”
Proc. SPIE
10918
,
109180V
(
2018
).
27.
M.
Takahashi
,
A.
Tanaka
,
Y.
Ando
,
H.
Watanabe
,
M.
Deki
,
M.
Kushimoto
,
S.
Nitta
,
Y.
Honda
,
K.
Shima
,
K.
Kojima
,
S. F.
Chichibu
,
K. J.
Chen
, and
H.
Amano
, “
Suppression of green luminescence of Mg-ion-implanted GaN by subsequent implantation of fluorine ions at high temperature
,”
Phys. Status Solidi B
257
,
1900554
(
2019
).
28.
M. A.
Reshchikov
, “
Determination of acceptor concentration in GaN from photoluminescence
,”
Appl. Phys. Lett.
88
(
20
),
202104
(
2006
).
29.
M. A.
Reshchikov
,
M.
Vorobiov
,
O.
Andrieiev
,
K.
Ding
,
N.
Izyumskaya
,
V.
Avrutin
,
A.
Usikov
,
H.
Helava
, and
Yu.
Makarov
, “
Determination of the concentration of impurities in GaN from photoluminescence and secondary-ion mass spectrometry
,”
Sci. Rep.
10
(
1
),
2223
(
2020
).
30.
T. L.
Alford
,
D. C.
Thompson
,
J. W.
Mayer
, and
N. D.
Theodore
, “
Dopant activation in ion implanted silicon by microwave annealing
,”
J. Appl. Phys.
106
(
11
),
114902
(
2009
).
31.
S. G.
Sundaresan
,
M. V.
Rao
,
Y.
Tian
,
J. A.
Schreifels
,
M. C.
Wood
,
K. A.
Jones
, and
A. V.
Davydov
, “
Comparison of solid-state microwave annealing with conventional furnace annealing of ion-implanted SiC
,”
J. Electron. Mater.
36
(
4
),
324
(
2007
).
32.
C.
Fu
,
Y.
Wang
,
P.
Xu
,
L.
Yue
,
F.
Sun
,
D.
Zhang
,
S.-L.
Zhang
,
J.
Luo
,
C.
Zhao
, and
D.
Wu
, “
Understanding the microwave annealing of silicon
,”
AIP Adv.
7
(
3
),
035214
(
2017
).
33.
J. H.
Booske
,
R. F.
Cooper
, and
I.
Dobson
, “
Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids
,”
J. Mater. Res.
7
(
2
),
495
501
(
1992
).
You do not currently have access to this content.