Template-assisted selective area growth techniques have gained popularity for their ability to grow epitaxial materials in prefabricated dielectric templates. Confined epitaxial lateral overgrowth (CELO) is one such technique that uses dielectric templates to define the geometry of the grown nanostructures. Two terminal low-temperature magneto-transport measurements were used to determine electronic properties. For doped In0.53Ga0.47As CELO nanostructures, we observe Shubnikov–De Hass oscillations in the longitudinal magnetoresistance and utilize these to estimate effective mass, carrier density, and mobilities. This analysis both reveals the presence of defects in these nanostructures and material variabilities between growth runs. Electron beam lithography and contact deposition for transport measurements were enabled by parasitic growth removal. In the future, this approach can enable other material systems to be explored for confined lateral epitaxy, improve material quality, and investigate a variety of quantum transport phenomenon in such nanoscale devices.

1.
C.
Zhang
and
X.
Li
, “
III-V nanowire transistors for low-power logic applications: A review and outlook
,”
IEEE Trans. Electron Devices
63
,
223
234
(
2016
).
2.
S. W.
Eaton
,
A.
Fu
,
A. B.
Wong
,
C. Z.
Ning
, and
P.
Yang
, “
Semiconductor nanowire lasers
,”
Nat. Rev. Mater.
1
,
16028
(
2016
).
3.
S.
Nadj-Perge
,
S. M.
Frolov
,
E. P. A. M.
Bakkers
, and
L. P.
Kouwenhoven
, “
Spin-orbit qubit in a semiconductor nanowire
,”
Nature
468
,
1084
1087
(
2010
).
4.
V.
Mourik
 et al., “
Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices
,”
Science
336
,
1003
1007
(
2012
).
5.
S.
Gazibegovic
 et al., “
Epitaxy of advanced nanowire quantum devices
,”
Nature
548
,
434
438
(
2017
).
6.
T.
Bryllert
,
L. E.
Wernersson
,
T.
Löwgren
, and
L.
Samuelson
, “
Vertical wrap-gated nanowire transistors
,”
Nanotechnology
17
,
S227
(
2006
).
7.
P.
Long
 et al., in
A Tunnel FET Design for High-Current, 120 mV Operation. International Electron Devices Meeting(IEDM)
,
San Francisco, CA
(IEEE,
2016
), pp.
30.2.1
30.2.4
. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7838511.
8.
C.
Convertino
 et al., “
InGaAs FinFETs directly integrated on silicon by selective growth in oxide cavities
,”
Materials
12
(
1
),
87
(
2018
).
9.
W.
Lu
,
P.
Xie
, and
C. M.
Lieber
, “
Nanowire transistor performance limits and applications
,”
IEEE Trans. Electron Devices
55
,
2859
2876
(
2008
).
10.
D.
Cutaia
 et al., in
Complementary III-V Heterojunction Lateral NW Tunnel FET Technology on Si. IEEE Symposium on VLSI Technology
,
Honolulu, HI
(
IEEE
,
2016
), pp.
1
2
.
11.
S.
Lee
 et al., “
High performance InGaAs gate-All-around nanosheet FET on Si using template assisted selective epitaxy
,” in
IEEE International Electron Devices Meeting (IEDM)
,
San Francisco, CA
(
IEEE
,
2018
), pp.
39.5.1
39.5.4
.
12.
Y.
Tian
,
S. R.
Bakaul
, and
T.
Wu
, “
Oxide nanowires for spintronics: Materials and devices
,”
Nanoscale
4
,
1529
(
2012
).
13.
P.
Uredat
 et al., “
The transport properties of InAs nanowires: An introduction to MnAs/InAs heterojunction nanowires for spintronics
,”
J. Phys. D: Appl. Phys.
53
,
333002
(
2020
).
14.
S.
Mauthe
 et al., “
InP-on-Si optically pumped microdisk lasers via monolithic growth and wafer bonding
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
6
),
1
7
(
2019
).
15.
S.
Wirths
 et al., “
Room-temperature lasing from monolithically integrated GaAs microdisks on silicon
,”
ACS Nano
12
,
2169
2175
(
2018
).
16.
B.
Shi
and
K. M.
Lau
, “
Growth of III–V semiconductors and lasers on silicon substrates by MOCVD
,” in
Future Directions in Silicon Photonics
(
Elsevier
,
2019
), pp.
229
282
.
17.
P.
Staudinger
,
S.
Mauthe
,
K. E.
Moselund
, and
H.
Schmid
, “
Concurrent zinc-blende and wurtzite film formation by selection of confined growth planes
,”
Nano Lett.
18
,
7856
7862
(
2018
).
18.
M.
Knoedler
 et al., “
Observation of twin-free GaAs nanowire growth using template-assisted selective epitaxy
,”
Cryst. Growth Des.
17
,
6297
6302
(
2017
).
19.
A.
Okamoto
and
K.
Ohata
, “
Selective epitaxial growth of gallium arsenide by molecular beam epitaxy
,”
Appl. Phys. Lett.
51
,
1512
1514
(
1987
).
20.
L.
Czornomaz
 et al., “
Confined epitaxial lateral overgrowth (CELO): A novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates
,” in
Symposium on VLSI Technology (VLSI Technology)
,
Kyoto, Japan
(IEEE,
2015
), pp.
T172
T173
. https://ieeexplore.ieee.org/document/7223666.
21.
H.
Schmid
 et al., “
Ballistic one-dimensional InAs nanowire cross-junction interconnects
,”
Nano Lett.
17
,
2596
2602
(
2017
).
22.
K.
Nielsch
 et al., “
Transition to the quantum Hall regime in InAs nanowire cross-junctions
,”
Semicond. Sci. Technol.
34
,
035028
(
2019
).
23.
J.
Wallentin
and
M. T.
Borgström
, “
Doping of semiconductor nanowires
,”
J. Mater. Res.
26
,
2142
2156
(
2011
).
24.
S. A.
Dayeh
,
R.
Chen
,
Y. G.
Ro
, and
J.
Sim
, “
Progress in doping semiconductor nanowires during growth
,”
Mater. Sci. Semicond. Process.
62
,
135
155
(
2017
).
25.
N.
Bologna
 et al., “
Dopant-induced modifications of GaxIn(1-x)P nanowire-based p-n junctions monolithically integrated on Si(111)
,”
ACS Appl. Mater. Interfaces
10
,
32588
32596
(
2018
).
26.
A.
Goswami
 et al., “
Controlling facets and defects of InP nanostructures in confined epitaxial lateral overgrowth
,”
Phys. Rev. Mater.
4
,
123403
(
2020
).
27.
M.
Borg
 et al., “
Facet-selective group-III incorporation in InGaAs template assisted selective epitaxy
,”
Nanotechnology
30
,
084004
(
2019
).
28.
S. T.
Šuran Brunelli
 et al., “
Horizontal heterojunction integration via template-assisted selective epitaxy
,”
Cryst. Growth Des.
19
,
7030
7035
(
2019
).
29.
P.
Aseev
 et al., “
Selectivity map for molecular beam epitaxy of advanced III-V quantum nanowire networks
,”
Nano Lett.
19
(
1
),
218
227
(
2019
).
30.
S. T.
Šuran Brunelli
,
B.
Markman
,
A.
Goswami
,
H. Y.
Tseng
,
S.
Choi
,
C.
Palmstrøm
,
M.
Rodwell
, and
J.
Klamkin
, “
Selective and confined epitaxial growth development for novel nano-scale electronic and photonic device structures
,”
J. Appl. Phys.
126
,
015703
(
2019
).
31.
M.
Friedl
 et al., “
Template-assisted scalable nanowire networks
,”
Nano Lett.
18
,
2666
2671
(
2018
).
32.
P.
Chuang
 et al., “
All-electric all-semiconductor spin field-effect transistors
,”
Nat. Nanotechnol.
10
,
35
39
(
2015
).
33.
T.
Schäpers
,
J.
Knobbe
, and
V. A.
Guzenko
, “
Effect of Rashba spin-orbit coupling on magnetotransport in InGaAs/InP quantum wire structures
,”
Phys. Rev. B
69
,
1
5
(
2004
).
34.
K.
Takase
,
Y.
Ashikawa
,
G.
Zhang
, et al., “
Highly gate-tuneable Rashba spin-orbit interaction in a gate-all-around InAs nanowire metal-oxide-semiconductor field-effect transistor
,”
Sci Rep
7
,
930
(
2017
).
35.
J. J.
Hou
 et al., “
Diameter dependence of electron mobility in InGaAs nanowires
,”
Appl. Phys. Lett.
102
,
093112
(
2013
).
36.
R.
Rana
 et al., “
Nonlinear charge transport in InGaAs nanowires at terahertz frequencies
,”
Nano Lett.
20
,
3225
3231
(
2020
).
37.
I.
Yang
 et al., “
Radial growth evolution of InGaAs/InP multi-quantum-well nanowires grown by selective-area metal organic vapor-phase epitaxy
,”
ACS Nano
12
(
10
),
10374
10382
(
2018
).
38.
M.
Avram
,
A.
Avram
,
M.
Purica
,
A. M.
Popescu
, and
C.
Voitincu
, “
Characterization of defects generated during reactive ion etching
,”
2009 International Semiconductor Conference
(IEEE,
2009
), pp. 249–252.
39.
F.
Léonard
and
A. A.
Talin
, “
Electrical contacts to one- and two-dimensional nanomaterials
,”
Nat. Nanotechnol.
6
,
773
783
(
2011
).
40.
A.
Guo
, “
Nano-scale metal contacts for future III-V CMOS
,”
Ph.D. thesis
(Massachusetts Institute of Technology,
2012
), pp.
1
66
.
41.
J. B.
Yoo
 et al., “
Effects of V/III ratio on Si-doping in InGaAs lattice-matched to InP grown by organometallic vapor phase epitaxy
,”
J. Cryst. Growth
132
,
43
47
(
1993
).
42.
E. M.
Lifshits
and
A. M.
Kosevich
, “
Theory of the Shubnikov-de Haas effect
,”
J. Phys. Chem. Solids
4
,
1
10
(
1958
).
43.
R. J.
Nicholas
,
J. C.
Portal
,
C.
Houlbert
,
P.
Perrier
, and
T. P.
Pearsall
, “
An experimental determination of the effective masses for GaxIn1-xAsyP1-y alloys grown on InP
,”
Appl. Phys. Lett.
34
,
492
494
(
1979
).
44.
D.
Schneider
,
L.
Elbrecht
,
J.
Creutzburg
,
A.
Schlachetzki
, and
G.
Zwinge
, “
In-plane effective mass of electrons in InGaAs/InP quantum wells
,”
J. Appl. Phys.
77
,
2828
2830
(
1995
).
45.
R. W.
Martin
 et al., “
Selective area epitaxy of InGaAs/InGaAsP quantum wells studied by magnetotransport
,”
Semicond. Sci. Technol.
11
,
735
740
(
1996
).
46.
A. M.
Kurakin
 et al., “
Quantum confinement effect on the effective mass in two-dimensional electron gas of AlGaN/GaN heterostructures
,”
J. Appl. Phys.
105
,
073703
(
2009
).
47.
D.
Schneider
,
F.
Hitzel
,
A.
Schlachetzki
, and
P.
Boensch
, “
Dependence of electron effective mass on the subband occupation in In0.53Ga0.47As/InP quantum wells
,”
Physica E
12
,
562
565
(
2002
).
48.
A.
Baraskar
, “
Development of ultra-low resistance ohmic contacts for InGaAs/InP HBTs
,”
Ph.D. thesis
(University of California, Santa Barbara,
2011
), p.
165
.
49.
M.
Fahed
,
L.
Desplanque
,
D.
Troadec
,
G.
Patriarche
, and
X.
Wallart
, “
Selective area heteroepitaxy of GaSb on GaAs (001) for in-plane InAs nanowire achievement
,”
Nanotechnology
27
,
505301
(
2016
).
50.
F.
Krizek
, “
Semiconductor nanowire networks grown by molecular beam epitaxy vapor-liquid-solid
,”
Ph.D. thesis
(University of Copenhagen,
2018
).

Supplementary Material

You do not currently have access to this content.