Machine learning (ML) has emerged as an increasingly important research tool and has shown great potential for efficient and high-throughput experimental data processing. Meanwhile, ultrafast laser-based time-domain thermoreflectance (TDTR) has been developed into a powerful thermal characterization technique and has been widely applied to measure thermal properties of both bulk and thin-film materials. In this work, artificial neural network-based ML models have been trained for data processing in TDTR experiments. One generally applicable ML model could be trained to process the experimental data of different samples measured using different modulation frequencies and laser spot sizes. Our results suggest that ML is not only fast and efficient in data processing but also accurate and powerful, capable of detecting minute features in the experimental signals and thus enabling extraction of multiple (three or more) parameters simultaneously from the experimental data. The ML model also enables high-speed estimation of the uncertainties of multiple parameters using the Monte Carlo method.

1.
I.
Portugal
,
P.
Alencar
, and
D.
Cowan
,
Expert Syst. Appl.
97
,
205
227
(
2018
).
2.
S. B.
Kotsiantis
,
I. D.
Zaharakis
, and
P. E.
Pintelas
,
Artif. Intell. Rev.
26
(
3
),
159
190
(
2007
).
3.
D.
Forsyth
,
Applied Machine Learning
(
Springer International Publishing
,
2019
).
4.
T.
Gangavarapu
,
C. D.
Jaidhar
, and
B.
Chanduka
,
Artif. Intell. Rev.
53
,
5019
5089
(
2020
).
5.
T. S.
Guzella
and
W. M.
Caminhas
,
Expert Syst. Appl.
36
(
7
),
10206
10222
(
2009
).
6.
A.
Graves
and
J.
Schmidhuber
,
paper presented at the Advances in Neural Information Processing Systems
,
2009
.
7.
H.
Yang
,
Z.
Zhang
,
J.
Zhang
, and
X. C.
Zeng
,
Nanoscale
10
(
40
),
19092
19099
(
2018
).
8.
T.
Zhan
,
L.
Fang
, and
Y.
Xu
,
Sci. Rep.
7
(
1
),
1
9
(
2017
).
9.
Y.
Liu
,
T.
Zhao
,
W.
Ju
, and
S.
Shi
,
J. Materiomics
3
(
3
),
159
177
(
2017
).
10.
P. R.
Chowdhury
,
C.
Reynolds
,
A.
Garrett
,
T.
Feng
,
S. P.
Adiga
, and
X.
Ruan
,
Nano Energy
69
104428
(
2020
).
11.
A.
Singh
,
B.
Ganapathysubramanian
,
A. K.
Singh
, and
S.
Sarkar
,
Trends Plant Sci.
21
(
2
),
110
124
(
2016
).
12.
W.
Shen
,
D.
Vaca
, and
S.
Kumar
,
Nanoscale Microscale Thermophys. Eng
.
24
(
3-4
),
138
149
(
2020
).
13.
P.
Jiang
,
X.
Qian
, and
R.
Yang
,
J. Appl. Phys.
124
(
16
),
161103
(
2018
).
14.
J.
Zhu
,
X.
Wu
,
D. M.
Lattery
,
W.
Zheng
, and
X.
Wang
,
Nanoscale Microscale Thermophys. Eng.
21
(
3
),
177
198
(
2017
).
15.
A. J.
Schmidt
,
Annu. Rev. Heat Transfer
16
(
1
),
159
(
2014
).
16.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
(
12
),
5119
(
2004
).
17.
C.
Wei
,
X.
Zheng
,
D. G.
Cahill
, and
J. C.
Zhao
,
Rev. Sci. Instrum.
84
(
7
),
071301
(
2013
).
18.
J.
Liu
,
J.
Zhu
,
M.
Tian
,
X.
Gu
,
A.
Schmidt
, and
R.
Yang
,
Rev. Sci. Instrum.
84
(
3
),
034902
(
2013
).
19.
P.
Jiang
,
X.
Qian
, and
R.
Yang
,
Rev. Sci. Instrum.
89
(
9
),
094902
(
2018
).
20.
H.
Kino
,
K.
Nakamura
,
K.
Hukushima
,
T.
Miyake
, and
D. H.
Chi
,
J. Phys. Soc. Jpn.
89
(
6
),
064802
(
2020
).
21.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
,
Nature
521
(
7553
),
436
444
(
2015
).
22.
F.
Burden
and
D.
Winkler
, in
Artificial Neural Networks Methods and Applications
, edited by
D. J.
Livingstone
(
Humana Press
,
Totowa, NJ
,
2009
), pp.
23
42
.
23.
L.
Prechelt
, in
Neural Networks: Tricks of the Trade: Second Edition
, edited by
G.
Montavon
,
G. B.
Orr
, and
K.-R.
Müller
(
Springer
,
Berlin
,
2012
), pp.
53
67
.
24.
P.
Kim
,
MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence
(
Apress
,
2017
).
25.
M.
Paluszek
and
S.
Thomas
,
MATLAB Machine Learning Recipes: A Problem-Solution Approach
(
Apress
,
2019
).
26.
K. E.
O’Hara
,
X.
Hu
, and
D. G.
Cahill
,
J. Appl. Phys.
90
(
9
),
4852
(
2001
).
27.
G. T.
Hohensee
,
W. P.
Hsieh
,
M. D.
Losego
, and
D. G.
Cahill
,
Rev. Sci. Instrum.
83
(
11
),
114902
(
2012
).
28.
J.
Yang
,
E.
Ziade
, and
A. J.
Schmidt
,
Rev. Sci. Instrum.
87
(
1
),
014901
(
2016
).
29.
C. N.
Hooker
,
A. R.
Ubbelohde
, and
D. A.
Young
,
Proc. R. Soc. London, Ser. A
284
(
1396
),
17
(
1965
).
30.
P.
Jiang
,
X.
Qian
, and
R.
Yang
,
Rev. Sci. Instrum.
88
(
7
),
074901
(
2017
).
31.
P.
Jiang
,
X.
Qian
,
X.
Li
, and
R.
Yang
,
Appl. Phys. Lett.
113
(
23
),
232105
(
2018
).
32.
Y. K.
Koh
and
D. G.
Cahill
,
Phys. Rev. B
76
(
7
),
075207
(
2007
).
33.
A. J.
Minnich
,
J. A.
Johnson
,
A. J.
Schmidt
,
K.
Esfarjani
,
M. S.
Dresselhaus
,
K. A.
Nelson
, and
G.
Chen
,
Phys. Rev. Lett.
107
(
9
),
095901
(
2011
).
34.
P.
Jiang
,
X.
Qian
,
X.
Gu
, and
R.
Yang
,
Adv. Mater.
29
(
36
),
1701068
(
2017
).
35.
S.
Dilhaire
,
G.
Pernot
,
G.
Calbris
,
J. M.
Rampnoux
, and
S.
Grauby
,
J. Appl. Phys.
110
(
11
),
114314
(
2011
).
36.
N.
Taketoshi
,
T.
Baba
, and
A.
Ono
,
Rev. Sci. Instrum.
76
(
9
),
094903
(
2005
).
You do not currently have access to this content.