Self-synchronization is a ubiquitous phenomenon in nature, in which oscillators are collectively locked in frequency and phase through mutual interactions. While self-synchronization requires the forced excitation of at least one of the oscillators, we demonstrate that this mechanism spontaneously appears due to activation from thermal fluctuations. By performing molecular dynamics simulations, we demonstrate self-synchronization in a platform supporting doped silicon resonator nanopillars having different eigenfrequencies. We find that pillar’s vibrations are spontaneously converging to the same frequency and phase. In addition, the dependencies on the intrinsic frequency difference and the coupling strength agree well with the Kuramoto model predictions. More interestingly, we find that a balance between energy dissipation resulting from phonon–phonon scattering and potential energy between oscillators is reached to maintain synchronization. The balance could be suppressed by increasing the membrane size. While microscopic stochastic motions are known to follow random probability distributions, we finally prove that they can also yield coherent collective motions via self-synchronization.

1.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
2.
J. D.
Touboul
,
C.
Piette
,
L.
Venance
, and
G. B.
Ermentrout
,
Phys. Rev. X
10
,
011073
(
2020
).
3.
L. L.
Bonilla
,
J. M.
Casado
, and
M.
Morillo
,
J. Stat. Phys.
48
,
571
(
1987
).
4.
M. F.
Colombano
,
G.
Arregui
,
N. E.
Capuj
,
A.
Pitanti
,
J.
Maire
,
A.
Griol
,
B.
Garrido
,
A.
Martinez
,
C. M.
Sotomayor-Torres
, and
D.
Navarro-Urrios
,
Phys. Rev. Lett.
123
,
017402
(
2019
).
5.
J.
Sheng
,
X.
Wei
,
C.
Yang
, and
H.
Wu
,
Phys. Rev. Lett.
124
,
053604
(
2020
).
6.
M.
Zhang
,
G. S.
Wiederhecker
,
S.
Manipatruni
,
A.
Barnard
,
P.
McEuen
, and
M.
Lipson
,
Phys. Rev. Lett.
109
,
233906
(
2012
).
7.
G.
Lan
,
P.
Sartori
,
S.
Neumann
,
V.
Sourjik
, and
Y.
Tu
,
Nat. Phys.
8
,
422
(
2012
).
8.
D.
Zhang
,
Y.
Cao
,
Q.
Ouyang
, and
Y.
Tu
,
Nat. Phys.
16
,
95
(
2019
).
9.
Y.
Kuramoto
, in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki (Springer, Berlin), pp. 420–422.
10.
I.
Hermoso de Mendoza
,
L. A.
Pachon
,
J.
Gomez-Gardenes
, and
D.
Zueco
,
Phys. Rev. E
90
,
052904
(
2014
).
11.
Y.
Kuramoto
and
I.
Nishikawa
,
J. Stat. Phys.
49
,
569
(
1987
).
12.
G.
Heinrich
,
M.
Ludwig
,
J.
Qian
,
B.
Kubala
, and
F.
Marquardt
,
Phys. Rev. Lett.
107
,
043603
(
2011
).
13.
M.
Zhang
,
S.
Shah
,
J.
Cardenas
, and
M.
Lipson
,
Phys. Rev. Lett.
115
,
163902
(
2015
).
14.
M.
Ludwig
and
F.
Marquardt
,
Phys. Rev. Lett.
111
,
073603
(
2013
).
15.
G. M.
Süel
,
J.
Garcia-Ojalvo
,
L. M.
Liberman
, and
M. B.
Elowitz
,
Nature
440
,
545
(
2006
).
16.
T.
Tome
and
M. J.
de Oliveira
,
Phys. Rev. E
82
,
021120
(
2010
).
17.
I.
Prigogine
and
P. V.
Rysselberghe
,
J. Electrochem. Soc.
110
,
97C
(
1963
).
18.
T.
Tome
and
M. J.
de Oliveira
,
Phys. Rev. Lett.
108
,
020601
(
2012
).
19.
I. I.
Blekhman
,
A. L.
Fradkov
,
O. P.
Tomchina
, and
D. E.
Bogdanov
,
Math. Comput. Simul.
58
,
367
(
2002
).
20.
Y.
Yamaguchi
,
K.
Kometani
, and
H.
Shimizu
,
J. Stat. Phys.
26
,
719
(
1981
).
21.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Courier Corporation
,
2003
).
22.
S.
Lee
,
K.
Esfarjani
,
T.
Luo
,
J.
Zhou
,
Z.
Tian
, and
G.
Chen
,
Nat. Commun.
5
,
3525
(
2014
).
23.
Z.
Zhang
,
S.
Hu
,
T.
Nakayama
,
J.
Chen
, and
B.
Li
,
Carbon
139
,
289
(
2018
).
24.
M. N.
Luckyanova
,
J.
Garg
,
K.
Esfarjani
,
A.
Jandl
,
M. T.
Bulsara
,
A. J.
Schmidt
,
A. J.
Minnich
,
S.
Chen
,
M. S.
Dresselhaus
, and
Z.
Ren
,
Science
338
,
936
(
2012
).
25.
S.
Hu
,
Z.
Zhang
,
P.
Jiang
,
J.
Chen
,
S.
Volz
,
M.
Nomura
, and
B.
Li
,
J. Phys. Chem. Lett.
9
,
3959
(
2018
).
26.
J.
Maire
,
R.
Anufriev
,
R.
Yanagisawa
,
A.
Ramiere
,
S.
Volz
, and
M.
Nomura
,
Sci. Adv.
3
,
e1700027
(
2017
).
27.
Y.
Wang
,
H.
Huang
, and
X.
Ruan
,
Phys. Rev. B
90
,
165406
(
2014
).
28.
Z.
Zhang
,
Y.
Ouyang
,
Y.
Cheng
,
J.
Chen
,
N.
Li
, and
G.
Zhang
,
Phys. Rep.
860
,
1
(
2020
).
29.
H.
Honarvar
and
M. I.
Hussein
,
Phys. Rev. B
97
,
195413
(
2018
).
30.
M. I.
Hussein
,
C.
Tsai
, and
H.
Honarvar
,
Adv. Funct. Mater.
30
,
1906718
(
2019
).
31.
S.
Xiong
,
K.
Sääskilahti
,
Y. A.
Kosevich
,
H.
Han
,
D.
Donadio
, and
S.
Volz
,
Phys. Rev. Lett.
117
,
025503
(
2016
).
32.
Z.
Wei
,
J.
Yang
,
K.
Bi
, and
Y.
Chen
,
J. Appl. Phys.
118
,
155103
(
2015
).
33.
C.
Li
,
M.
Bescond
, and
M.
Lannoo
,
Phys. Rev. B
80
,
195318
(
2009
).
34.
35.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
1988
).
36.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
37.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
38.
B. L.
Davis
and
M. I.
Hussein
,
Phys. Rev. Lett.
112
,
055505
(
2014
).
39.
O.
Hellman
,
I. A.
Abrikosov
, and
S. I.
Simak
,
Phys. Rev. B
84
,
180301
(
2011
).
40.
G.
Heinrich
, “Nanomechanics interacting with light: Dynamics of coupled multimode optomechanical systems” [“Nanomechanik im wechselspiel mit licht: Dynamik gekoppelter optomechanischer multimodensysteme”], Ph.D. thesis (Friedrich-Alexander-Universität Erlangen-Nürnberg, 2011).
41.
I.
Andricioaei
and
M.
Karplus
,
J. Chem. Phys.
115
,
6289
(
2001
).
42.
M.
Karplus
and
J. N.
Kushick
,
Macromolecules
14
,
325
(
1981
).
43.
J. W.
Ponder
and
F. M.
Richards
,
J. Comput. Chem.
8
,
1016
(
1987
).
44.
T.
Feng
,
W.
Yao
,
Z.
Wang
,
J.
Shi
,
C.
Li
,
B.
Cao
, and
X.
Ruan
,
Phys. Rev. B
95
,
195202
(
2017
).
45.
M.
Omini
and
A.
Sparavigna
,
Phys. B: Condens. Matter
212
,
101
(
1995
).
46.
K.
Sääskilahti
,
J.
Oksanen
,
J.
Tulkki
, and
S.
Volz
,
Phys. Rev. B
90
,
134312
(
2014
).
47.
J. M.
Larkin
,
J. E.
Turney
,
A. D.
Massicotte
,
C. H.
Amon
, and
A. J. H.
McGaughey
,
J. Comput. Theor. Nanosci.
11
,
249
(
2014
).
48.
C. H.
Baker
,
D. A.
Jordan
, and
P. M.
Norris
,
Phys. Rev. B
86
,
104306
(
2012
).
49.
J.
Shiomi
and
S.
Maruyama
,
Phys. Rev. B
73
,
205420
(
2006
).
50.
Z.
Zhang
,
Y.
Guo
,
M.
Bescond
,
J.
Chen
,
M.
Nomura
, and
S.
Volz
,
Phys. Rev. B
103
,
184307
(
2021
).

Supplementary Material

You do not currently have access to this content.