We excite the gyrotropic mode of a magnetic vortex and observe the resulting effect on the spin state of a nearby nitrogen-vacancy (NV) defect in diamond. Thin permalloy disks fabricated on a diamond sample are magnetized in a vortex state in which the magnetization curls around a central core. The magnetization dynamics of this configuration are described by a discrete spectrum of confined magnon modes as well as a low-frequency gyrotropic mode in which the vortex core precesses about its equilibrium position. Despite the spin transition frequencies being far-detuned from the modes of the ferromagnet, we observe enhanced relaxation of the NV spin when driving the gyrotropic mode. Moreover, we map the spatial dependence of the interaction between the vortex and the spin by translating the vortex core within the disk with an applied magnetic field, resulting in steplike motion as the vortex is pinned and de-pinned. Strong spin relaxation is observed when the vortex core is within approximately 250 nm of the NV center defect. We attribute this effect to the higher frequencies in the spectrum of the magnetic fringe field arising from the soliton-like nature of the gyrotropic mode when driven with sufficiently large amplitude.
Skip Nav Destination
Article navigation
28 August 2021
Research Article|
August 25 2021
Relaxation of a single defect spin by the low-frequency gyrotropic mode of a magnetic vortex
Special Collection:
Materials, Methods, and Applications of Color Centers with Accessible Spin
J. Trimble;
J. Trimble
1
Department of Physics, Case Western Reserve University
, Cleveland, Ohio 44106, USA
Search for other works by this author on:
B. Gould
;
B. Gould
1
Department of Physics, Case Western Reserve University
, Cleveland, Ohio 44106, USA
Search for other works by this author on:
F. J. Heremans;
F. J. Heremans
2
Pritzker School of Molecular Engineering, University of Chicago
, Chicago, Illinois 60637, USA
3
Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory
, Lemont, Illinois 60439, USA
Search for other works by this author on:
S. S.-L. Zhang;
S. S.-L. Zhang
1
Department of Physics, Case Western Reserve University
, Cleveland, Ohio 44106, USA
Search for other works by this author on:
D. D. Awschalom
;
D. D. Awschalom
2
Pritzker School of Molecular Engineering, University of Chicago
, Chicago, Illinois 60637, USA
3
Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory
, Lemont, Illinois 60439, USA
Search for other works by this author on:
J. Berezovsky
J. Berezovsky
a)
1
Department of Physics, Case Western Reserve University
, Cleveland, Ohio 44106, USA
a)Author to whom correspondence should be addressed: jab298@case.edu
Search for other works by this author on:
a)Author to whom correspondence should be addressed: jab298@case.edu
Note: This paper is part of the Special Topic on Materials, Methods, and Applications of Color Centers with Accessible Spin.
J. Appl. Phys. 130, 083903 (2021)
Article history
Received:
April 30 2021
Accepted:
July 30 2021
Citation
J. Trimble, B. Gould, F. J. Heremans, S. S.-L. Zhang, D. D. Awschalom, J. Berezovsky; Relaxation of a single defect spin by the low-frequency gyrotropic mode of a magnetic vortex. J. Appl. Phys. 28 August 2021; 130 (8): 083903. https://doi.org/10.1063/5.0055595
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00