There are many advantages of LEDs in energy and environmental conservation, but their short life in many outdoor applications prompt a necessity to have a detailed understanding of their degradations to prolong their lifetime, which can also conserve LED material and even expand their applications. Using ab initio density functional theory formulation, we identify the detail paths of the LED degradation in outdoor applications. We discovered that the main stressors are humidity and the light that is emitted from the LED chip itself. This is rather ironical. A mathematical model is developed based on the ab initio study, and excellent experimental agreements are found. With this model, we can predict the situations where no and slow degradations can be achieved, and these are verified experimentally here. We can also predict quantitatively the time to a specific degradation severity. Quality index of the housing material for LEDs can also be determined.

1.
See https://www.energy.gov/eere/ssl/articles/us-department-energy-publishes-new-energy-savings-forecast-solid-state-lighting for “U.S. Department of Energy publishes new energy savings forecast for solid-state lighting.”
2.
T.
Abergel
, “International Energy Agency;” available at https://www.iea.org/reports/lighting.
3.
See https://www.1ledlight.com/chinas-led-lighting-fixtures-are-frequently-recalled-and-quality-problems-constrain-international-competitiveness.html for “China’s LED lighting fixtures are frequently recalled, and quality problems constrain international competitiveness.”
4.
See https://www.cpsc.gov/Recalls/2014/halco-recalls-led-bulbs for “Halco recalls LED bulbs due to risk of injury and burn hazards.”
5.
See https://www.cpsc.gov/Recalls/2018/cooper-lighting-recalls-solarbattery-powered-light-fixtures-due-to-fire-hazard for “Cooper lighting recalls solar/battery powered light fixtures due to fire hazard.”
6.
C.
Ferretti
, “Detroit’s LED streetlights going dark after a few years” (2019); available at https://www.detroitnews.com/story/news/local/detroit-city/2019/05/07/detroits-led-streetlights-going-dark-after-few-years/3650465002/.
7.
C. H.
Wang
,
S. P.
Chang
,
P. H.
Ku
,
J. C.
Li
,
Y. P.
Lan
,
C. C.
Lin
,
H. C.
Yang
,
H. C.
Kuo
,
T. C.
Lu
,
S. C.
Wang
, and
C. Y.
Chang
, “
Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers
,”
Appl. Phys. Lett.
99
,
2009
2012
(
2011
).
8.
C. H.
Wang
,
S. P.
Chang
,
W. T.
Chang
,
J. C.
Li
,
Y. S.
Lu
,
Z. Y.
Li
,
H. C.
Yang
,
H. C.
Kuo
,
T. C.
Lu
, and
S. C.
Wang
, “
Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells
,”
Appl. Phys. Lett.
97
,
95
98
(
2010
).
9.
Y. K.
Kuo
,
J. Y.
Chang
,
M. C.
Tsai
, and
S. H.
Yen
, “
Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers
,”
Appl. Phys. Lett.
95
, 011116 (
2009
).
10.
P. T.
Barletta
,
E. A.
Berkman
,
B. F.
Moody
,
N. A.
El-Masry
,
A. M.
Emara
,
M. J.
Reed
, and
S. M.
Bedair
, “
Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures
,”
Appl. Phys. Lett.
90
,
151109
(
2007
).
11.
H.
Daicho
,
T.
Iwasaki
,
K.
Enomoto
,
Y.
Sasaki
,
Y.
Maeno
,
Y.
Shinomiya
,
S.
Aoyagi
,
E.
Nishibori
,
M.
Sakata
,
H.
Sawa
,
S.
Matsuishi
, and
H.
Hosono
, “
A novel phosphor for glareless white light-emitting diodes
,”
Nat. Commun.
3
,
1132
(
2012
).
12.
L.
Chen
,
C.-C.
Lin
,
C.-W.
Yeh
, and
R.-S.
Liu
, “
Light converting inorganic phosphors for white light-emitting diodes
,”
Materials
3
,
2172
2195
(
2010
).
13.
J.
Cho
,
J. H.
Park
,
J. K.
Kim
, and
E. F.
Schubert
, “
White light-emitting diodes: History, progress, and future
,”
Laser Photonics Rev.
11
, 1600147 (
2017
).
14.
J. K.
Kim
,
H.
Luo
,
E. F.
Schubert
,
J.
Cho
,
C.
Sone
, and
Y.
Park
, “
Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup
,”
Jpn. J. Appl. Phys.
44
,
19
22
(
2005
).
15.
C. C.
Lin
and
R.-S.
Liu
, “
Advances in phosphors for light-emitting diodes
,”
J. Phys. Chem. Lett.
2
,
1268
1277
(
2011
).
16.
L. E. D.
Chip
,
P.
With
,
B.
Green
,
G. C.
Chi
, and
R. K.
Wu
, “
White-light emission from near UV InGaN–GaN
,”
Technology
15
,
18
20
(
2003
).
17.
S.
Ye
,
F.
Xiao
,
Y. X.
Pan
,
Y. Y.
Ma
, and
Q. Y.
Zhang
, “
Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties
,”
Mater. Sci. Eng.: R: Rep.
71
,
1
34
(
2010
).
18.
H.
Luo
,
J. K.
Kim
,
E. F.
Schubert
,
J.
Cho
,
C.
Sone
, and
Y.
Park
, “
Analysis of high-power packages for phosphor-based white-light-emitting diodes
,”
Appl. Phys. Lett.
86
,
1
3
(
2005
).
19.
N. A.
Diachun
,
A. H.
Marcus
,
D. M.
Hussey
, and
M. D.
Fayer
, “
Dynamics in polydimethylsiloxane: The effect of solute polarity
,”
J. Am. Chem. Soc.
116
,
1027
1032
(
1994
).
20.
C.
Rücker
and
K.
Kümmerer
, “
Environmental chemistry of organosiloxanes
,”
Chem. Rev.
115
,
466
524
(
2015
).
21.
F. M.
Lewis
, “The science and technology of silicone rubber,”
Rubber Chemistry and Technology
35(5), 1222–1275 (1962).
22.
P.
Singh
and
C. M.
Tan
, “
Time evolution of packaged LED lamp degradation in outdoor applications
,”
Opt. Mater.
86
,
148
154
(
2018
).
23.
P.
Singh
and
C. M.
Tan
, “
Degradation physics of high power LEDs in outdoor environment and the role of phosphor in the degradation process
,”
Sci. Rep.
6
,
1
13
(
2016
).
24.
P.
Singh
and
C. M.
Tan
, “
A review on the humidity reliability of high power white light LEDs
,”
Microelectron. Reliab.
61
,
129
139
(
2016
).
25.
R. G.
Parr
,
N.
Handy
,
N.
March
,
P.
Payne
,
L.
Samuels
, and
W.
Wang
, in
Density-Functional Theory of Atoms and Molecules
(Springer,
1989
), pp.
5
15
.
26.
A.
Aliano
and
G.
Cicero
,
Encyclopedia of Nanotechnology
(Springer Science+Business Media, B.V.
2012
).
27.
J.
Hafner
,
C.
Wolverton
, and
G.
Ceder
, “
Toward computational materials design: The impact of density functional theory on materials research
,”
MRS Bull.
31
,
659
668
(
2006
).
28.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
29.
L.
Nian
,
X.
Pei
,
Z.
Zhao
, and
X.
Wang
, “
Review of optical designs for light-emitting diode packaging
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
9
,
642
648
(
2019
).
30.
Y.-K.
Su
,
P. C.
Wang
,
C. L.
Lin
,
G. S.
Huang
, and
C. M.
Wei
, “
Enhanced light extraction using blue LED package consisting of TiO2-doped silicone layer and silicone lens
,”
IEEE Electron Device Lett.
35
,
575
577
(
2014
).
31.
D. D.
Li
,
S.
Li
,
S.
Zhang
,
X. W.
Liu
, and
C. P.
Wong
, “
Thermo and dynamic mechanical properties of the high refractive index silicone resin for light emitting diode packaging
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
4
,
190
197
(
2014
).
32.
A. W.
Norris
,
M.
Bahadur
, and
M.
Yoshitake
, “
Novel silicone materials for LED packaging
,”
Proc. SPIE
5941
,
594115
(
2005
).
33.
W.
Klopper
,
J. G. C. M.
Van Duijneveldt-van De Rijdt
, and
F. B.
Van Duijneveldt
, “
Computational determination of equilibrium geometry and dissociation energy of the water dimer
,”
Phys. Chem. Chem. Phys.
2
,
2227
2234
(
2000
).
34.
M.
Cypryk
and
Y.
Apeloig
, “
Mechanism of the acid-catalyzed Si-O bond cleavage in siloxanes and siloxanols. A theoretical study
,”
Organometallics
21
,
2165
2175
(
2002
).
35.
C. Technology
, “
Glass ceramics
,”
J. Am. Ceramic Society-Wiederhorn and Bolz
53
(
10
),
2
3
(
1970
).
36.
N. W.
Taylor
, “
Mechanism of fracture of glass and similar brittle solids
,”
J. Appl. Phys.
18
,
943
955
(
1947
).
37.
D. A.
Stuart
and
O. L.
Anderson
, “
Dependence of ultimate strength of glass under constant load on temperature, ambient atmosphere, and time
,”
J. Am. Ceram. Soc.
36
,
416
424
(
1953
).
38.
W. W.
Gerberich
and
M.
Stout
, “
Discussion of thermally activated approaches to glass fracture
,”
J. Am. Ceram. Soc.
59
,
222
225
(
1976
).
39.
B. K.
Atkinson
, “
A fracture mechanics study of subcritical tensile cracking of quartz in wet environments
,”
Pure Appl. Geophys.
117
,
1011
1024
(
1979
).
40.
C.
Hühn
,
A.
Erlebach
,
D.
Mey
,
L.
Wondraczek
, and
M.
Sierka
, “
Ab initio energetics of Si—O bond cleavage
,”
J. Comput. Chem.
38
,
2349
2353
(
2017
).
41.
P.
Ptáček
,
F.
Šoukal
, and
T.
Opravil
, “Introduction to the Transition state theory,” in Introducing the Effective Mass of Activated Complex and the Discussion on the Wave Function of this Instanton (Intech, 2018).
42.
J. K.
West
, “
Theoretical analysis of hydrolysis of polydimethylsiloxane (PDMS)
,”
J. Biomed. Mater. Res.
35
,
505
511
(
1997
).
43.
C. A.
Ballhausen
and
H. B.
Gray
,
Molecular Orbital Theory: An Introductory Lecture Note and Reprint Volume
(W. A. Benjamin, Inc.,
2006
).
44.
J.
Spivack
and
S. B.
Dorn
, “
Hydrolysis of oligodimethylsiloxane-α,ω-diols and the position of hydrolytic equilibrium
,”
Environ. Sci. Technol.
28
,
2345
2352
(
1994
).
45.
Y.
Demirel
, “
Extended nonequilibrium thermodynamics
,” in
Nonequilibrium Thermodynamics
(Elsevier,
2002
), Vol. V, pp.
373
394
.
46.
S.
Varaprath
,
D. H.
Stutts
, and
G. E.
Kozerski
, “
A primer on the analytical aspects of silicones at trace levels-challenges and artifacts—A review
,”
Silicon Chem.
3
,
79
102
(
2006
).
47.
C.
Kapridaki
and
P.
Maravelaki-Kalaitzaki
, “
TiO2-SiO2-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection
,”
Prog. Org. Coat.
76
,
400
410
(
2013
).
48.
K.
Hood
,
Comprehensive Polymer Science and Supplements
(
Elsevier
,
1989
).
49.
F. G.
Helfferich
, “
Chapter 12—Unusual thermal and mass-transfer effects
,”
Compr. Chem. Kinet.
38
,
375
388
(
2001
).
50.
M. G.
Evans
and
M.
Polanyi
, “Some applications of the transition state method to the calculation of reaction velocities, especially in solution”
Transactions of the Faraday Society
31
, 875–894 (
1935
).
51.
H.
Jürgen
, “
Materials simulations using VASP—a quantum perspective to materials science
,”
Computer physics communications
177
(
1–2
),
6
13
(
2011
).
52.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
53.
J. J. P.
Stewart
, “
Optimization of parameters for semiempirical methods VI : More modifications to the NDDO approximations and re-optimization of parameters
,”
J. Molecular Modeling
19
(
1
),
1
32
(
2013
).
54.
G.
Ducom
,
B.
Laubie
,
A.
Ohannessian
,
C.
Chottier
,
P.
Germain
, and
V.
Chatain
, “
Hydrolysis of polydimethylsiloxane fluids in controlled aqueous solutions
,”
Water Sci. Tech.
68
(
4
),
813
820
(
2013
).
55.
G. K. H.
Madsen
, “
Functional form of the generalized gradient approximation for exchange: The PBEα functional
,”
Phys. Rev. B
75
,
195108
(
2007
).
56.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
Climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
57.
G.
Henkelman
,
G.
Jóhannesson
, and
H.
Jónsson
, “
Methods for finding saddle points and minimum energy paths
,” in
Theoretical Methods in Condensed Phase Chemistry
(
Kluwer Academic Publishers
,
2005
), pp.
269
302
.
58.
T.
Rohwedder
and
R.
Schneider
, “
An analysis for the DIIS acceleration method used in quantum chemistry calculations
,”
J. Math. Chem.
49
,
1889
1914
(
2011
).
59.
C. M.
Tan
,
B. K.
Chen
,
X.
Li
, and
S. J.
Chen
, “
Rapid light output degradation of GaN-based packaged LED in the early stage of humidity test
,”
IEEE Trans. Device Mater. Reliab.
12
,
44
48
(
2012
).
60.
C. M.
Tan
and
P.
Singh
, “
Time evolution degradation physics in high power white LEDs under high temperature-humidity conditions
,”
IEEE Trans. Device Mater. Reliab.
14
,
742
750
(
2014
).
You do not currently have access to this content.